

LlamaTouch: A Faithful and Scalable Testbed for Mobile UI Task Automation

<u>Li Zhang</u>, Shihe Wang, Xianqing Jia, Zhihan Zheng, Yunhe Yan, Longxi Gao, Yuanchun Li[#], Mengwei Xu

Beijing University of Posts and Telecommunications (BUPT) #Institute for AI Industry Research (AIR), Tsinghua University

Mobile UI Task Automation

LLM/MLLM-powered Mobile UI Agents

LLM/MLLMs for Mobile UI Perception and Action Prediction

LLM/MLLM-powered Mobile UI Agents

9

LLM/MLLMs for Mobile UI **Perception and Action Prediction**

Task Execution Traces

Can these agents accurately complete 5 user requests?

Evaluating Mobile UI Agents

Task Execution Traces

✓ High accuracy
 Low scalability
 High cost

Evaluating Mobile UI Agents

Task Execution Traces

Ground-truth UI Traces in Static Datasets

Evaluating Mobile UI Agents

Task Execution Traces

Ground-truth UI Traces in Static Datasets

Observation

□ Target: <u>Scalable</u> (as evaluated on static datasets) and <u>faithful</u> (as evaluated by humans) evaluation

Observation: UI automation tasks transfer app states represented on the screen.

Task: Open app "Microsoft Excel" (install if not already installed), go to the login page

Observation

□ Target: <u>Scalable</u> (as evaluated on static datasets) and <u>faithful</u> (as evaluated by humans) evaluation

□ Observation: UI automation tasks transfer app states represented on the screen.

Task: Open app "Microsoft Excel" (install if not already installed), go to the login page

Observation

Our Approach

Our approach: Check app states during and after task execution, rather than comparing concrate action sequences.

> For a given task, how to annotate app states to represent task completion?

Task Completion Annotation

Annotate and match at the whole-screen level

Unable to handle dynamic screen resolutions, dynamic screen contents (e.g., ads)

Task Completion Annotation

Annotate and match at the whole-screen level

Unable to handle dynamic screen resolutions, dynamic screen contents (e.g., ads)

U What we want: Fine-grained app state annotation

Task Completion Annotation

Annotate and match at the whole-screen level

Unable to handle dynamic screen resolutions, dynamic screen contents (e.g., ads)

What we want: Fine-grained app state annotation

- 1. The whole screen -> single UI components
- 2. Annotate those only essential ones

Task Completion Annotation: Examples

Task: Empty the shopping cart on BestBuy

Task Completion Annotation: Examples

Annotation Primitives

Match Type	State Type	Primitive	Keyword	Use Case
Fuzzy motch		Screen info	fuzzy<-1>	Check if the contents on two screens are approximately identical.
Fuzzy match		Textbox	fuzzycn	Check if the content of the target textbox is semantically similar
	UI state	Textbox	Tuzzy<112	to the content of the original textbox <n> in the ground-truth UI.</n>
		Activity	activity	A coarse-grained approach to determining if two UIs represent
		Activity	activity	the same functional screen in an application.
Exact match		Ill component	exact <n>,</n>	Check if the UI component is exactly identical to the UI component <n>,</n>
			exclude <n></n>	or does not occur, in the ground-truth UI.
	System state	(Un)installation	installed <app>,</app>	Check if the target application named "app" has been successfully
	System state	(On)Instanation	uninstalled <app></app>	installed/uninstalled.
	Action	Action	click <n>,</n>	Check if two actions and their parameters are identical
	Action	Асноп	<pre>type<input_text></input_text></pre>	Check if two actions and men parameters are identical.

Two types of matching design: Exact match and fuzzy match
 Annotation at different granularity: The whole screen, individual
 UI components, system states, actions, etc.

Implementation of corresponding match logic of these primitives during evaluation

LlamaTouch Dataset

Dataset scale: 496 tasks

- 102 from Android-in-the-Wild* with essential state annotated
- 394 new-constructed ones, covering diverse daily apps; annotate from stratch

Category	# Task	# Apps	Avg. Steps
AITW [25]	102	26	7.35 (2-19)
Generated	394	46	5.67 (3-42)
Total	496	57	7.01 (2-42)

*Rawles, Christopher, et al. "Android-in-the-wild: A large-scale dataset for android device control." NeurIPS 2024.

LlamaTouch Dataset

Dataset scale: 496 tasks

- □ 102 from Android-in-the-Wild* with essential state annotated
- 394 new-constructed ones, covering diverse daily apps; annotate from stratch

Data: Each task includes

- Screen representations: Pixel-level screeshots, view hierarchies, Android activities
- $\hfill\square$ Actions on each screen
- □ Task instructions
- Annotated essential states
- Task setup: A global Android emulator image (with installed apps), and env setup scripts

*Rawles, Christopher, et al. "Android-in-the-wild: A large-scale dataset for android device control." NeurIPS 2024.

On-device Task Execution

□ UI automation task in real-world environments

□ Rather than predicting actions on static datasets

Realistic Mobile Environments

On-device Task Execution

□ UI automation task in real-world environments

- □ Rather than predicting actions on static datasets
- □ AgentEnv: A list of APIs to bridge mobile UI agents and real—world mobile environments

Offline Trace Evaluation

Task execution traces are automatically logged by AgentEnv

Offline Trace Evaluation

- Task execution traces are automatically logged by AgentEnv
- LlamaTouch Evaluator: Compare task execution traces with predefined essential states in LlamaTouch Dataset

Putting Them Together

device

LlamaTouch is easy to use.

□ Integrate mobile UI agents to AgentEnv

□ Implement trace evaluation logic

Evaluation Setup

- Key question: Can LlamaTouch evaluate mobile UI agents with high faithfulness?
- □ Metric: Accuracy of evaluation methods
 - Taking human validation results as the ground truth

Baselines: Two action match-based evaluation methods on static datasets

- □ Step-wise action match (require two action sequences are identical)
- Longest common subsequence (LCS)-based action match* (add nonessential actions tolerance between ground-truth actions)

Mobile UI agents: AutoDroid (GPT-4, MobiCom'24), Auto-UI (customized model, ACL'24), CoCo-Agent (LLaVa, ACL'24), AppAgent (GPT-40)

^{*}Xing, Mingzhe, et al. "Understanding the weakness of large language model agents within a complex android environment." SIGKDD 2024.

Table 6: End-to-end task completion rate (TCR %) and accuracy (Acc. %) of different evaluation approaches of <u>all tasks</u>.

Mobile Agent	Step-wise action match		LCS action match		LlamaTouch		Human
	TCR	Acc.	TCR	Acc.	TCR	Acc.	TCR
AutoUI	0.00	98.18	0.00	98.18	4.44	96.57	1.82
AutoDroid	0.00	85.98	0.00	85.98	14.84	91.87	14.02
AppAgent	0.00	93.33	0.61	93.13	10.91	94.95	6.67
CoCo-Agent	0.00	97.97	0.00	97.97	4.47	96.34	2.03
Average	0.00	93.86	0.15	93.81	8.67	94.93	6.14

Results from All Tasks

Table 6: End-to-end task completion rate (TCR %) and accuracy (Acc. %) of different evaluation approaches of <u>all tasks</u>.

Mobile	Step-wise action match		LCS action match		LlamaTouch		Human
Agent	TCR	Acc.	TCR	Acc.	TCR	Acc.	TCR
AutoUI	0.00	98.18	0.00	98.18	4.44	96.57	1.82
AutoDroid	0.00	85.98	0.00	85.98	14.84	91.87	14.02
AppAgent	0.00	93.33	0.61	93.13	10.91	94.95	6.67
CoCo-Agent	0.00	97.97	0.00	97.97	4.47	96.34	2.03
Average	0.00	93.86	0.15	93.81	8.67	94.93	6.14

Action-match methods failed to evaluate tasks (with an almost 0% task completion rate).

Results from All Tasks

Table 6: End-to-end task completion rate (TCR %) and accuracy (Acc. %) of different evaluation approaches of <u>all tasks</u>.

Mobile	Step-wise action match		LCS action match		LlamaTouch		Human
Agent	TCR	Acc.	TCR	Acc.	TCR	Acc.	TCR
AutoUI	0.00	98.18	0.00	98.18	4.44	96.57	1.82
AutoDroid	0.00	85.98	0.00	85.98	14.84	91.87	14.02
AppAgent	0.00	93.33	0.61	93.13	10.91	94.95	6.67
CoCo-Agent	0.00	97.97	0.00	97.97	4.47	96.34	2.03
Average	0.00	93.86	0.15	93.81	8.67	94.93	6.14

Action-match methods failed to evaluate tasks (with an almost 0% task completion rate).

LlamaTouch reports task completion rates closer to human validation (e.g., 8.6 vs. 6.1).

Results from All Tasks

Table 6: End-to-end task completion rate (TCR %) and accuracy (Acc. %) of different evaluation approaches of <u>all tasks</u>.

Mobile	Step-wise action match		LCS action match		LlamaTouch		Human
Agent	TCR	Acc.	TCR	Acc.	TCR	Acc.	TCR
AutoUI	0.00	98.18	0.00	98.18	4.44	96.57	1.82
AutoDroid	0.00	85.98	0.00	85.98	14.84	91.87	14.02
AppAgent	0.00	93.33	0.61	93.13	10.91	94.95	6.67
CoCo-Agent	0.00	97.97	0.00	97.97	4.47	96.34	2.03
Average	0.00	93.86	0.15	93.81	8.67	94.93	6.14

Action-match methods failed to evaluate tasks (with an almost 0% task completion rate).

LlamaTouch reports task completion rates closer to human validation (e.g., 8.6 vs. 6.1).

All methods show high accuracy as there are most false cases: UI agents cannot complete most requirements in real-world envs.

Results Completed Tasks

Table 7: Accuracy (Acc. %) of different evaluation approaches among <u>all successful tasks in human validation.</u>

Mobile	Step-wise action match	LCS action match		lamaTou	ch	Human
Agent	Acc.	Acc.		Acc.		# success
AutoUI	0.00	0.00		77.78		9
AutoDroid	0.00	0.00		73.91		69
AppAgent	0.00	3.03		93.94		33
CoCo-Agent	0.00	0.00		70.00		10
Average	0.00	0.76		78.91		30

Among all successful tasks (validated by humans), LlamaTouch achieves nearly 80% accuracy.

Results Completed Tasks

Table 7: Accuracy (Acc. %) of different evaluation approaches among <u>all successful tasks in human validation.</u>

Mobile	Step-wise action match		LCS action match	1 LlamaTouch	Human
Agent		Acc.	Acc.	Acc.	# success
AutoUI		0.00	0.00	77.78	9
AutoDroid		0.00	0.00	73.91	69
AppAgent		0.00	3.03	93.94	33
CoCo-Agent		0.00	0.00	70.00	10
Average		0.00	0.76	78.91	30

Among all successful tasks (validated by humans), LlamaTouch achieves nearly 80% accuracy.

Action match approaches achieve nearly 0% accuracy. Table 7: Accuracy (Acc. %) of different evaluation approaches among <u>all successful tasks in human validation.</u>

Mobile	Step-wise action match	LCS actior match	1 LlamaTouch	Human
Agent –	Acc.	Acc.	Acc.	# success
AutoUI	0.00	0.00	77.78	9
AutoDroid	0.00	0.00	73.91	69
AppAgent	0.00	3.03	93.94	33
CoCo-Agent	0.00	0.00	70.00	10
Average	0.00	0.76	78.91	30

Among all successful tasks (validated by humans), LlamaTouch achieves nearly 80% accuracy.

Action match approaches achieve nearly 0% accuracy.

LlamaTouch significantly reduces false negative cases.

Conclusion

- LlamaTouch is the first faithful and scalable testbed for mobile UI task automation.
- General Science and Science a
- Fully open-source: Annotation platforms, dataset, LlamaTouch evaluator, mobile UI agents integrated into LlamaTouch

LlamaTouch is available at
<u>https://github.com/LlamaTouch/LlamaTouch</u>

🖌 li.zhang@bupt.edu.cn