
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 1

Efficient, Scalable, and Sustainable DNN
Training on SoC-Clustered Edge Servers

Mengwei Xu Member, IEEE , Daliang Xu, Chiheng Lou, Li Zhang, Gang Huang Senior Member, IEEE , Xin
Jin Senior Member, IEEE , Xuanzhe Liu Senior Member, IEEE

Abstract— In the realm of industrial edge computing, a novel server architecture known as SoC-Cluster, characterized by its
aggregation of numerous mobile systems-on-chips (SoCs), has emerged as a promising solution owing to its enhanced energy
efficiency and seamless integration with prevalent mobile applications. Despite its advantages, the utilization of SoC-Cluster servers
remains unsatisfactory, primarily attributed to the tidal patterns of user-initiated workloads. To address such inefficiency, we introduce
SoCFlow+, a pioneering framework designed to facilitate the co-location of deep learning training tasks on SoC-Cluster servers,
thereby optimizing resource utilization.
SoCFlow+ incorporates three novel techniques tailored to mitigate the inherent limitations of commercial SoC-Cluster servers. First, it
employs group-wise parallelism complemented by delayed aggregation, a strategy engineered to enhance the training efficiency and
scalability of deep learning models, effectively circumventing network bottlenecks. Second, it integrates a data-parallel mixed-precision
training algorithm, optimized to exploit the heterogeneous processing capabilities inherent to mobile SoCs fully. Third, SoCFlow+
employs an underclocking-aware workload re-balanacing mechanism to tackle the training performance degradation caused by the
thermal control of mobile SoCs. Through rigorous experimental validation, SoCFlow+ achieves a convergence speedup ranging from
1.6× to 740× across 32 SoCs, compared to conventional benchmarks. Furthermore, when juxtaposed with commodity GPU servers
(e.g., NVIDIA V100) under identical power constraints, SoCFlow+ not only exhibits comparable training speed but also achieves a
remarkable reduction in energy consumption by a factor of 2.31× to 10.23×, all while preserving convergence accuracy.

Index Terms—Edge computing, distributed training

✦

1 INTRODUCTION

The burgeoning field of edge computing has witnessed the
advent of a novel server architecture, termed SoC-Cluster,
which is predicated on the integration of a multitude of
mobile system-on-chips (SoCs) [1], [2]. This innovation dis-
tinguishes itself from conventional cloud or edge datacenter
servers by offering a more compact computing solution,
boasting an ability to house up to 480 physical cores within
a 2U rack space through the deployment of 60 Snapdragon
865 SoCs. Such a configuration not only promises superior
energy efficiency but also facilitates the seamless execution
of native mobile applications without necessitating modifi-
cations. Consequently, SoC-Clusters have found extensive
applications in edge clouds, serving a myriad of mobile
applications ranging from cloud gaming [3], [4] to live
streaming [5], underscored by their deployment in millions
of units globally.

Despite their widespread adoption, a meticulous exam-
ination of SoC-Cluster server utilization in §2 reveals a
paradox of under-utilization. Data obtained from thousands

• Mengwei Xu and Li Zhang are with the State Key Laboratory of
Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China.
E-mail: {mwx;li.zhang}@bupt.edu.cn.

• Daliang Xu, Chiheng Lou, Gang Huang, Xin Jin, and Xuanzhe Liu
are with the Key Laboratory of High Confidence Software Technologies
(Peking University), Ministry of Education; School of Computer Science,
Peking University, Beijing, China
E-mail: {xudaliang;hg;xinjinpku;liuxuanzhe}@pku.edu.cn, louchi-
heng23@stu.pku.edu.cn.

Manuscript received March 30, 2024.

of such servers in actual deployment scenarios unveil that
over 95% of these SoCs operate below 20% CPU usage on
average. This under-utilization is primarily attributed to the
user-driven nature of the hosted applications, which inher-
ently exhibit significant fluctuations in resource demand,
manifesting a tidal usage pattern. This observation is cor-
roborated by prior studies [6] and highlights an inefficiency
in resource allocation that merits addressal.

In light of this under-utilization, we propose the co-
location of deep learning (DL) training tasks on idle SoCs
within SoC-Clusters. This proposition is driven by three
pivotal reasons. First, the edge cloud represents a nexus
where mobile user data accumulates, making it an ideal
venue for DL model training [7], [8], [9], [10], [11], [12], [13].
This approach not only alleviates backbone network load
by minimizing data transit distances but also addresses pri-
vacy concerns through local data consumption. Moreover, it
enables geographically tailored model training, enhancing
personalization in applications such as item recommenda-
tions [14], [15], [16]. Second, DL training tasks, characterized
by their predictable and delay-tolerant nature, complement
existing workloads on SoC-Clusters, offering a practical so-
lution to bridge the utilization gap. Finally, the burgeoning
research in mobile SoCs equipped with on-chip accelerators
has significantly advanced the feasibility of executing DL
tasks on such platforms, promising enhanced computational
efficiency and energy savings [17], [18], [19].

However, the venture into DL training on SoC-Clusters
is not devoid of challenges. Our initial forays into this
domain in §2.2 revealed that singular SoCs fall short of
the computational prowess required for timely training of

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 2

medium-sized models. For instance, training VGG-11 [20]
on CIFAR-10 takes 29.1 hours on Snapdragon 865 CPU,
or 7.5 hours on NPU in INT8 data format with 2.7% ac-
curacy loss. Such prolonged training time not only delays
the deployment of the updated model to users but also
complicates the software design as training needs to span
multiple idle periods. This predicament nudges us towards
distributed training across multiple SoCs as a viable accel-
eration mechanism. Intuitively, like model training on cloud
servers, we can orchestrate multiple SoCs to accelerate DNN
training, i.e., distributed training. While this technique has
been extensively explored in datacenters [21], [22], [23], we
find it introduces its own set of hurdles, which collectively
necessitate innovative solutions to harness the full potential
of SoC-Clusters for DL training.

• Limited network bandwidth. Datacenters traditionally of-
fer robust network infrastructures, providing up to 100Gbps
bandwidth to accommodate the demands of distributed
training workloads [23]. In stark contrast, the network
within a typical SoC-Cluster server is constrained to a mere
1Gbps. This limitation is further exacerbated by the shared
nature of the network among multiple SoCs, a consequence
of the centralized network switch design inherent to the
SoC architecture. Such a configuration, while sufficient for
less demanding applications like cloud gaming, becomes a
significant bottleneck when subjected to the intensive net-
work traffic of distributed DNN training. This bottleneck ef-
fect hinders the scalability of traditional datacenter-oriented
network topologies, such as the Parameter Server [21] and
Ring-AllReduce [24], within the SoC-Cluster environment.

• Heterogeneous processors with mixed data formats. The di-
versity of processors within mobile SoCs, including domain-
specific accelerators, presents a unique set of challenges for
DL workload optimization. Specifically, (i) mobile GPUs
have been shown to be suboptimal for training tasks [25],
[26], [27]; and (ii) mobile NPUs, while capable of accel-
erating training, necessitate low-precision formats such as
INT8, which can lead to trade-offs between training speed
and model accuracy [12]. Addressing this duality requires
the development of sophisticated mixed-precision training
algorithms and aggregation schemes that can harmonize
the disparate computational capabilities and data formats
of mobile CPUs and NPUs to achieve both efficient training
and satisfactory model accuracy.

• Hardware underclocking. Edge servers are often de-
ployed on harsh environments where dedicated cooling
mechanisms are not available, e.g., cellular base stations,
retail stores, outdoor kiosks/ATMs, etc [28]. Mobile SoCs
are inherently less tolerant to thermal stress compared to
their datacenter counterparts, a characteristic that poses
significant challenges during sustained distributed training
sessions. The accumulation of heat within the SoC-Cluster
can trigger protective underclocking mechanisms in SoCs,
a phenomenon observed during the training of ResNet-
18 on CIFAR-10, where instances of underclocking were
noted, each lasting from several seconds to minutes [29].
Such thermal-induced underclocking disrupts the balance of
workload distribution across SoCs, leading to inefficiencies
and delays in the training process.

This paper introduces SoCFlow+, a pioneering frame-
work designed to surmount these challenges and facilitate

efficient DL model training on SoC-Cluster servers. At its
core, SoCFlow+ aims to amplify training speeds in pro-
portion to the number of participating SoCs, focusing on
models of sizes and complexities pertinent to edge cloud
requirements. It achieves this through the introduction of
following novel techniques.

Group-wise parallelism with delayed aggregation
(§3.1). Inspired by the prior efforts on communication-
efficient distributed training [30], [31] and federated learn-
ing protocols [8], SoCFlow+ employs a hierarchical network
topology to mitigate the network bottleneck. Specifically,
SoCFlow+ divides the SoCs into groups: within a group,
the SoCs form a Ring-AllReduce topology and exchange
their weight updates frequently (e.g., per batch); across
groups, the weights are aggregated in a delayed manner
(e.g., per epoch) akin to federated learning. To fully unleash
the SoC parallelism, SoCFlow+ incorporates three steps in
determining the concrete topology and runtime strategy:
(1) determining a proper group size through a novel utility
function that jointly considers the training speed and cross-
group data distribution gap; (2) judiciously mapping the
logical hierarchical topology into the concrete physical SoC-
Cluster architecture with an integrity-greedy mapping al-
gorithm, seeking to minimize the communication overhead;
and (3) carefully ordering the group-wise communication at
runtime to reduce network contention.

Data-parallel mixed-precision training (§3.2).
SoCFlow+ leverages mobile CPU and NPU for data-
parallel training with weights/gradients in FP32 and INT8
formats, respectively. The mixed-precision aggregation is
performed on the chip before cross-SoC synchronization.
SoCFlow+ further introduces two key metrics: one that
estimates the accuracy gap between the logits from the CPU
and NPU; and another that measures the compute power
gap between the CPU and NPU. Utilizing these metrics,
SoCFlow+ judiciously partitions the per-batch training
data across CPU/NPU to optimize the training speed and
to mitigate the precision loss of INT8-based training by
offloading part of the training to the CPU with FP32 format.

Passive training-cooling co-design (§3.3) We conduct
an exhaustive examination of the interplay between tem-
perature dynamics and fan speed control, revealing that
the energy demand for cooling operations to prevent SoC
underclocking parallels that of ten fully engaged SoCs. In
light of these findings, SoCFlow+ introduces a novel passive
training-cooling co-design aimed at optimizing fan energy
consumption while accommodating minor underclocking
instances. This approach strategically minimizes the impact
on energy efficiency. Additionally, SoCFlow+ implements
a workload redistribution mechanism to address and miti-
gate the implications of underclocking, thereby ensuring a
marginal effect on overall system performance.

We have fully implemented SoCFlow+ on top of
MNN [32], the state-of-the-art training library on mobile
SoCs. SoCFlow+ supports models exported from Tensor-
Flow [33] and PyTorch [22]. We have also comprehen-
sively evaluated the system on a commercial SoC-Cluster
server with five popular DNNs and five datasets that are
representative of edge cloud scenarios. We also compare
SoCFlow+ to six competitive baselines [34], [35], [36], [37],
[23], [24], [38], including traditional Parameter Server and

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 3

0:00 4:00 8:00 12:00 16:00 20:00 24:00
Hour in a Day

0
20
40
60
80

100

B
us

y
So

C
s (

%
) idle

busy

Fig. 1. Busy SoCs ratio within a day on deployed SoC-Cluster servers.

Ring-AllReduce topologies, as well as advanced methods
with hierarchical architecture and gradient compression.
The experiments show that SoCFlow+ can significantly and
consistently outperform all baselines in terms of training
speed while preserving the convergence accuracy (¡1% loss),
e.g., 1.6×–740× convergence speedup with 32 SoCs. In most
cases, SoCFlow+ is the only approach that can complete the
training within a typical idle time frame of a day (∼4hrs),
allowing for model updates on a daily basis. Besides, com-
pared to a commodity GPU (i.e., NVIDIA V100) that is
widely used for DL training, SoCFlow+ achieves similar
training speed but with 2.31×–10.23× reduced energy con-
sumption.

The major contributions of this work are as follows:
• We highlight the opportunity of co-locating DNN train-

ing with existing workloads on deployed SoC-Cluster
servers and identify the major challenges through ex-
periments.

• We propose SoCFlow+, an efficient DNN training en-
gine for SoC-Clusters. To scale the training speed with
more participant SoCs, it incorporates two novel tech-
niques: group-wise parallelism with delayed aggrega-
tion and data-parallel mixed-precision training, which
enable SoCFlow+ to fully unleash the heterogeneous
SoC hardware capacity under scarce network band-
width.

• We prototype SoCFlow+ and evaluate it with extensive
experiments. The results demonstrate its superior per-
formance over existing methods.

2 BACKGROUND AND MOTIVATION

This work targets SoC-Cluster, a unique form of edge server
that consists of massive, low-power ARM-based system-on-
chips (SoCs). For more background and measurements of
this platform, please refer to our previous work [39], [2].

2.1 DNN Training on SoC-Clusters
According to our industrial partner (a major edge service
provider), tens of thousands of such SoC-Clusters have been
deployed on their edge clouds, serving edge applications
like mobile cloud gaming. On a daily basis, millions of game
sessions are being launched on those servers. The number
of those SoC-Clusters is still increasing rapidly because they
have demonstrated superior performance to support tasks
offloaded from mobile devices.

However, the average CPU utilization of those deployed
SoC-Clusters is still low, i.e., below 20% according to the

VGG-11 ResNet-18
Model

0
50

100
150
200

Tr
ai

ni
ng

 ti
m

e
(h

)

CPU-FP32
NPU-INT8

(a) End-to-end training time

4 8 12 16 20 24 28 32
Number of Mobile SoCs

103

104

La
te

nc
y

(m
s)

V11
R18

V11-PS
R18-PS

(b) Communication latency

VGG-11 ResNet-18
Model

70
75
80
85
90

A
cc

ur
ac

y
(%

)

CPU-FP32
NPU-INT8

(c) Convergence accuracy

0 2 4 6 8 10 12 14
Time (minutes)

2.0
2.2
2.4
2.6
2.8

Fr
eq

ue
nc

y
(G

H
z)

VGG11
ResNet18

2

4

Tr
ai

ni
ng

 ti
m

e
(s

)

VGG11-Time
ResNet18-Time

(d) Frequency and Per-epoch train-
ing time

Fig. 2. Measurement results of training VGG-11 (V11) and ResNet-18
(R18) models on CIFAR-10 dataset atop edge SoC cluster.

runtime traces we collected. The primary reason is that
the workloads hosted on SoC-Clusters exhibit significant
tidal phenomena. For example, the number of active game
users from 11:00 AM to 17:00 PM is more than one order
of magnitude higher than 3:00 AM to 8:00 AM, as shown
in Figure 1. This phenomenon attributes to the inherent,
user-centric characteristics of the workloads hosted on SoC-
Clusters. It is consistent with the recent large-scale empirical
study on commercial edge platforms [6], [39].

To increase the hardware utilization, a typical method is
to co-locate best-effort workloads with those latency-critical
workloads on servers [40], [41], [42]. In this work, we seek
to perform DNN training [42] on the SoC-Clusters when
they are idle, regarding its popularity and predictability
as discussed in §1. It can also reduce the cost of purchas-
ing additional hardware (e.g., NVIDIA GPUs) to handle
the training workloads for edge service providers, thus
eliminating the CO2 emission while manufacturing such
saved electronic devices. At runtime, it further reduces the
energy consumption for DNN training tasks compared to
commodity datacenter-scale GPUs, due to the high energy
efficiency of mobile SoCs, as experimentally shown in §4.

2.2 Challenges and Observations
DNN training is known to be time-consuming; making it
shorter, therefore has become a hot topic of cloud computing
research in recent years. The significance of fast training is
especially valued on SoC-Clusters: an excessively prolonged
training task, lasting for tens of hours, not only delays
the model’s availability for use by users but also adds
complexity to software design. This is because the extended
training process may occupy multiple idle time windows of
SoCs, making it more challenging to manage and optimize
system resources effectively.

As the first attempt, we tested classical DNN mod-
els (e.g., VGG-11 [20] and ResNet-18 [29] on CIFAR-10
dataset [43]) atop the SoC-Cluster presented above, using
the state-of-the-art mobile training engines MNN [32]. We
use those small to medium-sized models since the mod-
els trained on edge servers are often to be deployed on

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 4

end devices. In our experiments, we aimed to answer the
following questions: (1) Is a single SoC adequate to train
DNNs fast? (2) If not, can multiple SoCs be used together
to speed up training, and how scalable is this approach?
(3) How much can heterogeneous processors equipped on
SoCs help, especially the mobile NPUs [12]? The results are
illustrated in Figure 2.
• Observation #1: DNN training on a single SoC is
extremely slow. Our experiments show that it takes more
than 29 and 233 hours to train VGG-11 and ResNet-18
on the mobile CPU, respectively, as shown in Figure 2(a).
Even with state-of-the-art mixed-precision training algo-
rithms [44], training on a mobile NPU still takes nearly 10
and 36 hours for VGG-11 and ResNet-18, respectively. Such
long-time training has to span multiple idle time windows
and motivates distributed training on multiple SoCs.
• Observation #2: The efficiency of distributed training
is severely bottlenecked by the cross-SoC network. Ring-
AllReduce and parameter-server communication latency
with increasing the number of SoCs is shown in Figure 2(b).
In our experiments, a PCB board contains 5 SoCs. There-
fore, experiments with less than 5 SoCs involve intra-PCB
board communication; otherwise, inter-PCB board commu-
nication. Intra-PCB board Ring-AllReduce gradient com-
munication takes 540 and 699 ms to finish for the VGG-
11 and ResNet-18 models; parameter-server gradient com-
munication takes 2060 and 2700 ms correspondingly. That
is because they are designed for cloud gaming, whose
communication is nearly all out-server. Worse, 32-SoC inter-
PCB board gradient communication takes 1248, 2225, 20593,
and 26505 ms, 2.31–9.81× more than the intra-one. That is
because Ring-AllReduce’s latency scales linearly with the
number of nodes [45], [46], [47], [48], and 32-SoC weight
aggregation’s preparing and starting the communication for
the ResNet18 model takes 1300 ms, 58% of total commu-
nication latency. Such delays are unbearable for distributed
machine-learning scenarios.
• Observation #3: mixed-precision training algorithm may
degrade model accuracy. Since most mobile NPUs only
support INT8 operations, offloading training tasks to them
could lead to accuracy degradation – the price paid for a
few times accelerations compared to CPU. Worse, when
these INT8 training algorithms are applied to distributed
deep learning, the accuracy degradation increases severely.
Specifically, the convergence accuracy of training with INT8
on 32 mobile SoC’ NPU for VGG-11 and ResNet-18 model
is 5.94% and 8.25% lower than training with FP32, as shown
in Figure 2(c).
• Observation #4: The training efficiency suffers from the
high SoC temperature and under-clocked SoCs. Unlike
hardware designed for clouds, SoCs have tighter constraints
for its operational environments. As Figure 2(d) shows, after
15-minute training, the CPU frequency drops from 2.8GHz
to 1.8GHz or 2.55GHz as the SoC temperature rises sharply
from 28◦C to 46◦C. Such a phenomenon results in up to
59–76% per-epoch training delays, as shown in Figure 2(d).

3 SOCFLOW+ DESIGN

SoCFlow+ is a data-parallel distributed DNN training
framework on SoC-Clusters that aims to achieve fast DNN

training under the collaboration of many SoCs without
compromising accuracy. Figure 3(a) illustrates its overall
architecture. SoCFlow+ takes the training datasets and the
DNN to be trained as input. It then continuously trains the
DNN until convergence or manually terminated. From the
developers’ perspective, using SoCFlow+ is just as easy and
standard as using other distributed training frameworks
such as TensorFlow or PyTorch. Besides, SoCFlow+ con-
siders sudden user requests during off-peak periods, e.g.,
early midnight, when most SoCs are used to train DNN
models. SoCFlow+ includes checkpoints on Mobile SoCs
to ensure that a new user-related workload request can
preempt training tasks and maintain high service quality
for users. Since the group-wise training structure is flexible
(§ 3.1), SoCFlow+ only needs to terminate a logical group of
SoCs to minimize the reduction in training efficiency while
preserving the convergence accuracy.

SoCFlow+ mainly consists of two modules:
• Global scheduler is a lightweight software deployed on
the SoC-Cluster’s control board. Its primary function is to
coordinate the training process. Ahead of the training, it de-
termines how SoCs will be orchestrated, such as SoC group-
ing, inter-/intra-group gradients synchronizing frequency,
and aggregation methodology, as will be elaborated in §3.
Then, it dispatches the training data and model to each SoC.
During training, each SoC loads only a partial dataset based
on the data-parallelism strategy. Throughout the training
process, the SoC-Cluster may incur underclocking issues
that could delay the training. The scheduler also deals with
the issues by passive training-cooling co-design (§3.3). This
module contains most of SoCFlow+’ designs.
• Distributed training engine is responsible for the gradi-
ent computing on each SoC. It supports FP32-based training
on CPU, Int8-based training on mobile NPU, or mixed-
precision training with both. It also aggregates the gradi-
ents/weights sent from other SoCs and synchronizes them.

3.1 Group-wise Parallelism with Delayed Aggregation

In general, there are two ways to address the network
bottleneck in distributed DNN training.
• One is to design an efficient network topology, which

specifies how data (model weight updates in our case)
flows and aggregates across SoCs. In data centers, Ring-
AllReduce [24] is a bandwidth-optimal communication
strategy and is widely used in network-constrained sce-
narios. However, it is still inadequate for SoC-Cluster, as
previously shown in Figure 2. In essence, it attributes to
the severe mismatch of compute-to-network capacity on
SoC-Cluster.

• The other is to delay the weights aggregation from
each compute node. This approach is commonly used in
federated learning [49], [37], where the clients are geo-
distributed and are connected to a central server through
a wireless network. For instance, FedAvg [37] protocol lets
each client train a model for one or many data epochs
instead of one batch before uploading it to the cloud
for aggregation. By increasing the computing time, the
network bottleneck is mitigated. This approach, however,
causes model staleness and potential accuracy degrada-
tion [37].

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 5

PCB Board NPCB Board 1

Global Scheduler

Passive training-
cooling co-design

Intra/inter group
synchronization

Workload
balance

Control and input communication
(epoch granularity) Distributed Training Engine

SoC group
division

Mobile
SoCs
Mobile
SoCs
Mobile
SoCs

Mobile
SoCs

Logical Group3

Mobile
SoCs
Mobile
SoCs

Partial input data
and model

CPU
DSP

CPU
DSP

Mobile
SoCs

Logical Group1

Mobile
SoCs
Mobile
SoCs

CPU
DSP

SoC group
mapping

Communication
 group planning

Untrained
neutral network

Cloud application
private data

(a) A simplified workflow.

SoC1 SoC2

SoC3 SoC4

Logical group2
SoC1 SoC2

SoC3 SoC4

Logical group3

SoC1 SoC2

SoC3 SoC4

Logical group1Cross-group
weights

aggregation

Cross-group
aggregation
leader SoC

Intra-group
SoC

CPU

Gradients/
weights

Intra-
SoC Communication

DSP

Intra-group
gradients

aggregation

Intra-group
gradients

aggregation

Intra-group
gradients

aggregation

(b) Communication topology.

Mobile
SoC

PCB Board1 PCB Board2 PCB Board3

Mobile
SoC2

Mobile
SoC3

Mobile
SoC1

Mobile
SoC5

Mobile
SoC10

Mobile
SoC9

Mobile
SoC12

Mobile
SoC11

Mobile
SoC15

Mobile
SoC13

Mobile
SoC14

LG1 LG2 LG4LG3
Distributed Training Engine

Mobile
SoC8

Mobile
SoC7

Mobile
SoC6

Mobile
SoC4

LG5Logical groups:

(c) Logical-to-physical
mapping.

Fig. 3. The overview of SoCFlow+.

TABLE 1
The symbols and terms used in §3

Terms/Symbols Description
Physical group
(PG) The SoCs that reside in the same PCB.

Logical group
(LG)

The SoCs that exchange weights frequently through
Ring-AllReduce topology. It is determined by SoCFlow+ at runtime.

Communication
group (CG)

A few logical groups whose intra-group synchronization
does not incur NIC contention.

M The total number of the SoCs.
N The number of the logical groups.
K The number of the PCB boards (physical groups).
NUMsample The number of dataset samples.
BSg The sum of all local mini-batch sizes of SoCs within a logical group.
Ac

BSg

N N logical groups’ convergent accuracy with a global batch size BSg .

The network capacity of SoC-Cluster lies somewhere
between the high-speed data center and wireless network.
Therefore, we propose a hierarchical topology that enables
group-wise parallelism across SoCs, as shown in Figure 3(b).
SoCFlow+ divides the SoCs into logical groups: (1) Within
a logical group, the SoCs form a Ring-AllReduce topol-
ogy and exchange their model updates frequently, i.e., per
batch. Different groups’ intra-group training can execute
in parallel. To ensure similar training accuracy as standard
local stochastic gradient descent (SGD) [50], [51], SoCFlow+
employs synchronized stochastic gradient descent (SSGD)
algorithm within each group. SoCFlow+ leverages both SoC
CPU and NPU for model training. Therefore, before cross-
SoC synchronization, the gradients computed by the CPU
and NPU are aggregated first on the chip. (2) Across logical
groups, the weights are aggregated in a delayed manner
and infrequently, i.e., per epoch. Unlike federated learn-
ing, SoCFlow+ can shuffle the input data among different
groups to guarantee high convergence accuracy. Notably,
at the beginning of inter-group synchronization, to reduce
synchronization time, each logical group selects a leader
(SoC in brown in Figure 3(b)) to aggregate weights with
other groups, and all groups’ leaders also form a Ring-
AllReduce topology.

There are four crucial steps to efficiently realize the
proposed mechanism: (1) determining the number of SoCs
of each logical group, i.e., the group size; (2) controlling
the inter-group communication frequency; (3) mapping the
logical topology of SoC groups into the physical SoC-Cluster
architecture; (4) planning the group-wise communication to
minimize the NIC contention during training. The terms
used in this section are shown in Table 1.
Determining group size. Supposing M SoCs will be di-
vided into N groups, and each group’s global batch size is

124 8 16 32
Group number

25
50
75

A
cc

ur
ac

y
(%

)

VGG11
VGG11-FirstEpoch

(a) VGG11

124 8 16 32
Group number

25
50
75

A
cc

ur
ac

y
(%

)

VGG11
VGG11-FirstEpoch

(b) ResNet18

Fig. 4. The testing accuracy after achieving final convergence and for
only the first epoch is compared across different group sizes.

BSg , the per-epoch training time can be formulated as

Tepoch =
NUMsample

(N ∗BSg)
∗ (TBSg

train ∗ N

M
+ Tsync) (1)

where T
BSg

train and Tsync are the computing and synchroniza-
tion time. In the SoCFlow+, Tsync consists of intra-group
communication and inter-group communication time. Since
the computing, intra-group communication, and inter-
group communication time are constant, Tepoch is negatively
correlated to N . Meanwhile, convergence accuracy exhibits
a negative correlation with the number of groups, as an
increased batch size tends to adversely affect convergence
accuracy [52], [53], [54]. This is also confirmed by our
experiments in Figure 4, which shows a too large group
number notably degrades convergence accuracy.

To identify the largest group size N that guarantees
minimal training time while preserving convergence accu-
racy, SoCFlow+ offers system designers the flexibility to
empirically select this parameter by default and provides an
optional heuristic approach. This approach capitalizes on
an observation: the training accuracy observed during the
initial epoch closely mirrors the behavior of convergence
accuracy, as shown in Figure 4. Thus, during the warm-
up stage, SoCFlow+ profiles the training accuracy from a
smaller group size to a larger one. It halts at the first group
size where accuracy falls significantly, typically to around
15%, signifying substantial degradation. This is exemplified
by the choices of 4 and 8 in Figure 4(a) and (b).

Our experiments validate the efficacy of this heuristic
approach. Nevertheless, it is essential to note that this
approach relies on heuristics rather than a solid theoretical
foundation. Consequently, its applicability across all model
types may be limited.
Controlling inter-group communication frequency. Inter-
group communication frequency is a crucial factor influ-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 6

0.00 0.25 0.50 0.75 1.00
Time (hours)

0
10
20
30
40
50
60
70
80

A
cc

ur
ac

y
(%

)

Ours-1
Ours-0.25
Ours-0.5
Ours-2
Ours-4

(a) VGG-11

0.0 0.3 0.6 0.9 1.2
Time (hours)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Ours-1
Ours-0.25
Ours-0.5
Ours-2
Ours-4

(b) ResNet-18

Fig. 5. Convergence accuracy across clock time under different inter-
group communication frequency. Ours-X represents SoCFlow+ uses X
epochs as the inter-group communication interval.

encing both convergence speed and convergence accuracy.
Typically, a higher communication frequency leads to con-
verge faster but with lower accuracy, since frequent synchro-
nization increases the model’s learning ability but is more
likely to get into the local optimum. Our pilot experiments
support this observation. We comprehensively investigate
the end-to-end training performance of SoCFlow+ under
32 SoCs with communication frequencies of 0.25, 0.5, 1,
2, and 4 epochs, as shown in Figure 5. According to the
two models’ results, Ours-0.25 always converges the fastest
but with lower accuracy. Ours-1/Ours-2 have the highest
convergence accuracy, e.g., 82.83% and 84.35% for VGG-11
and ResNet-18, respectively.

To achieve both higher convergence accuracy and faster
convergence speed, SoCFlow+ reduces inter-group com-
munication frequency in a manner similar to learning rate
decay [55], [56]. We initialize the communication frequency
at a value of 0.25. Following every GN epochs, the com-
munication frequency undergoes a half decay process until
it reaches the minimum communication frequency value
(e.g., 2 in the majority of cases). The default value of GN
in SoCFlow+ is 10, and SoCFlow+ allows user sets its value
empirically.
Mapping the logical topology into the physical SoC-
Cluster architecture. The SoCs in a SoC-Cluster server are
organized into different physical groups (PCBs). Intuitively,
a logical group is better mapped to SoCs within the same
physical PCB, so that the intensive intra-group data ex-
change does not go through the external NIC to minimize
the contention. Yet, the logical and physical group sizes are
often unequal, so that a mixed partitioning is unavoidable.

We first formulate the mapping problem: suppose there
are K PCB boards, and each logical groups contains M

N
SoCs. The i-th PCB board contains Si logical groups, de-
noted as Li = {Li,0, Li,1, · · · , Li,Si

}. If the number of SoCs
for the j-th logical group in i-th PCB board is smaller than
M
N (denoted by |Li,j | < M

N), there must be at least one
SoC in other PCB boards, therefore incurring inter-PCB
communication. We use Linter

i to represent logical groups
with inter-PCB communications inside i-th PCB in Eq 2.

Linter
i = {x | |x| < M

N
,∀x ∈ Li} (2)

The maximum number of K PCB boards’ inter-PCB com-
munication logical groups is denoted by C ,

C = max{|Linter
i |,∀i ∈ K} (3)

CG1

LG 1
LG 2
LG 3

1 1
1 1
1 1

CG2 1 1

2 2
2 2
2 2

1 2

N N
N N
N N

N N 1

1
1
1

...

...

Computing Inter-group
synchronization

Intra-group
synchronization

LG 5

LG 4 1 1 2 2 N N 1

Fig. 6. The group-wise communication planning used by SoCFlow+.
CG and LG represent the communication group and logical group,
respectively.

which represents the conflict numbers. SoCFlow+’s objec-
tive is to minimize C .

To solve the problem, SoCFlow+ employs a novel map-
ping algorithm: integrity-greedy mapping: First, SoCFlow+
maps as many logical groups as possible to physical groups
without splitting. Figure 3(c) illustrates an example with a
logical group size 3 and a physical group size 5. In this
case, each three nodes within logical groups 1–3 are all
placed within the first three SoCs in the corresponding
PCBs. Second, the rest of the logical nodes are mapped in
sequence. For both logical and physical nodes, we squeeze
them into a 1-D dimension by placing the nodes within a
group continuously, and the mapping follows the squeezed
order. In this step, the four nodes within logical group 4
span the 1st and 2nd PCBs, while the nodes within logical
group 5 span the 2nd and 3rd PCBs.

We have the following theorems for the integrity-greedy
mapping algorithm. The first theorem can be proven by the
”greedy stays ahead” algorithm [57]. Mapping as many LGs
as possible with no inter-PCB communication always has
less NIC contention. While the second one can be proved by
contradiction.
Theorem 1: Integrity-greedy mapping minimizes C . This theo-
rem guarantees the optimality for the mapping stage.
Theorem 2: Integrity-greedy mapping guarantees that each log-
ical group contends with up to two other logical groups for
NIC. This theorem is used in the next stage in planning
communications.
Planning group-wise communication to minimize the
contention. When the logical group size does not match
with the physical group size (which is often true), the NIC
contention between logical groups is inevitable. To mitigate
such contention, SoCFlow+ seeks to carefully determine
their communication timing.

Specifically, SoCFlow+ further combines logical groups
into different communication groups (CGs). In the same CG,
different logical groups’ intra-group synchronization is in-
terleaved. For example, logical groups 1–4 in Figure 3(c)
forms one CG, while logical group 5 is put into another CG.
This is because LG1–3 have no inter-PCB communication
and can be placed anywhere, while LG4 and LG5 have inter-
PCB communication and are conflicted with each other.
After CG division, different CGs’ intra-group synchroniza-
tion communicates separately in sequence to avoid network
contention, as shown in Figure 6. Specifically, designing an
effective communication strategy faces the following two
challenges:
• How to divide logical groups into CGs. In general, finding

the minimum CGs division is crucial to SoCFlow+, since
more CGs need more communication intervals. However,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 7

such a problem is equivalent to minimum graph coloring
problem [58], which is an NP-Hard problem.

• How to plan CGs communication sequence to minimize the idle
time of processors. Since only one CG’s logical groups can
synchronize at some time, other CGs should wait until no
network communication. The waiting time may lead to
wasting processor resources.

To address the first challenge, fortunately, theorem 2 of
integrity-greedy mapping guarantees that one logical group
contends for NIC with up to two other logical groups. This
transforms the CG division problem into the minimum bi-
partite graph coloring problem, for which the optimal solu-
tion can be obtained using the depth-first search (DFS) [59].

Regarding the second challenge, an intuitive approach
is to use a pipeline of several CGs to hide the intra-
group communication time. In general, to completely hide
n sequences of communication, the computing time should
be at least n − 1 times longer than the communication
time. Fortunately, the solution to the first challenge [59]
guarantees that the number of CGs needed is at most two.
Therefore, the communication can be totally hidden as long
as the computing is slower than the communication, which
is observed to be true in most of our experiments. Figure 6
illustrates how the overlapping works.

Lastly, after training all batch samples, all SoCs start
inter-group synchronization. Therefore, the extra delay of
SoCFlow+ is only one intra-group and inter-group synchro-
nization time.

3.2 Data-parallel Mixed-precision Training

As discussed in §2.2, mobile NPU can accelerate DNN
training at the cost of compromised accuracy by using INT8
data format. To address this, SoCFlow+ exploits both the
CPU and NPU on mobile SoCs in parallel, i.e., a mixed-
precision training paradigm, to achieve both high accuracy
and fast training. Per batch, the training data is partitioned
into CPU and NPU. When training completes on both CPU
and NPU, SoCFlow+ directly aggregates the weights from
them through on-chip IPCs before the intra-group synchro-
nization, as shown in Figure 3(b). Currently, we employ the
standard SGD as the training optimizer on CPU and the
state-of-the-art INT8-based optimizer [44] on NPU.

SoCFlow+ tackles two primary issues in designing the
mixed-precision training algorithm: (1) The numerical er-
rors incurred by FP32-to-INT8 quantization on NPU could
accumulate exponentially as training goes on. Therefore,
naively averaging the gradients from the CPU and NPU
could lead to significant accuracy loss. SoCFlow+ needs to
minimize the quantization errors to guarantee convergence
accuracy. (2) Unlike distributed training scenarios where
worker nodes are homogeneous [60], [61], [36], [62], mobile
CPUs/NPUs face huge training speed gaps. SoCFlow+
needs a way to harmoniously pace the two training pro-
cesses.

To solve the above two problems, SoCFlow+ controls the
relative amount of data fed to the models running on CPU
and NPU, without re-engineering the network structure or
training process. More specifically, SoCFlow+ introduces
two metrics:

• α – confidence that indicates the error gap between
the INT8 model and the FP32 model. To calculate
it, SoCFlow+ simply profiles the validation set on
CPU/NPU prior to each training epoch. It can be formu-
lated as

α = Cos(< logitsFP32, logitsINT8 >) (4)

We use cosine similarity since it avoids the negative
effect of the varied gradients’ magnitudes from FP32 and
INT8, as shown in Eq 4. When α approaches zero, the
INT8 model is less accurate, so SoCFlow+ allocates more
data for CPU training to mitigate training accuracy loss;
otherwise, more data should be fed to the NPU to improve
training speed. Typically, the cosine similarity of two
models’ logits decays exponentially [63]. It means as the
error gap between the two models increases, the decline
of α becomes slower. Thus, although the minor quanti-
zation error will accumulate exponentially after massive
multiplication and addition calculation, α does not de-
crease much. Correspondingly, SoCFlow+ leverages e−α

to control input data partition to avoid exponential decay.
The portion of mini-batch samples into the CPU model
should be no less than e−α, while the portion into the
NPU model must not exceed 1− e−α. Weight aggregation
is also modified as follows.

wt+1 = e−α ∗ wFP32
t+1 + (1− e−α) ∗ wINT8

t+1 (5)

where wFP32
t+1 and wINT8

t+1 are t+ 1 iteration weights from
the FP32 and INT8 model, respectively. Oftentimes, at the
beginning of a training task, the INT8 model on NPU
is accurate enough and α is close to 1, so much of the
training data is fed into the NPU to improve the training
speed; when approaching convergence, α is close to 0 so
more data is fed to the CPU to guarantee the convergence
accuracy.

• β - compute power ratio that represents the ratio of compute
power for heterogeneous processors. It is simply profiled
as the CPU-to-NPU performance gap before the training
task begins. For SoCFlow+, β can be formulated as

β =
TNPU

TNPU + TCPU
(6)

To avoid processor idleness, the portions of input data
being fed into the NPU should be exactly as β does.

When jointly considering accuracy requirements and
performance issues, SoCFlow+ always feds max{e−α, 1 −
β} portion of data into the CPU. That is because when e−α

is larger than β, NPU processing capacity is not enough
and the CPU is idle, so feeding more data into NPU cannot
gain any benefit. Otherwise, SoCFlow+ is bottlenecked by
the quantization error from the INT8 model, and more data
should be fed into the CPU even if the NPU is idle.

3.3 Passive Training-cooling Co-design
Temperature control is often a pressing issue for edge server
deployments [28], especially when there is no dedicated
cooling facility, e.g., cellular base stations, retail stores, out-
door kiosks/ATMs, etc. Specifically, SoC-Cluster leverages
air cooling strategy (e.g., fans) to radiating devices; such
strategy is easier to use and cheaper than free or water

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 8

TABLE 2
A summary of fan speed and corresponding SoC temperature,
performance decline, and energy overhead for VGG-11 model.

Speed Power Temp. Perf. decline Power overhead
1100 0 W 39◦C 30% 0%
3250 3 W 39◦C 30% 1.5%
5700 9 W 39◦C 30% 4.5%
8300 25 W 34–35◦C 5% 12.5%
11000 51 W 32◦C 0% 25.5%
14000 107 W 31◦C 0% 53.5%

cooling [28], [64], [65]. However, air cooling struggles to
satisfy the strict cooling demand at SoC-Cluster’s high
power density due to its low heat conduction capacity and
the difficulty in managing the airflow efficiently when the
rack and aisle are increasingly compact [28]. Worse, since
the temperature of the SoCs highly depends on the environ-
ment temperature, hardware specifications, and co-located
workloads, some specific SoCs will underclock unavoidably.

To mitigate the impacts of underclocking, one straight-
forward method is to avoid it by increasing the fan speed
during training, i.e., an active manner. To this end, we study
the relation between the fan speed and the SoC temperature
on a typical SoC-Cluster with 60 Snapdragon 865 SoCs.
The experiments are performed on 40 of the SoCs under
ambient temperature (25◦C). Note that the underclocking is
triggered by the SoC hardware, instead of the software.

As shown in Table 2, increasing the fan speed over 11,000
can maintain the temperature around 32◦C without under-
clocking or performance degradation. However, it incurs
51 watts of power consumption overhead, which equals 10
SoCs running at full utilization. Instead, one might use a fan
speed of 8,300 that incurs relatively lower energy overhead
(25 watts) with an acceptable performance loss (5%) due to
underclocking. This approach, however, still has two draw-
backs. First, its energy consumption is still nontrivial and
higher than data center infrastructure with highly optimized
cooling facilities. Second, such an active cooling decision is
rather ad-hoc: the temperature of the SoCs highly depends
on the environment temperature, hardware specifications,
workloads, etc. Note that the SoCs of a single SoC-Cluster
might serve different types of workloads simultaneously. It
makes an active method that always obtains an “oracle” fan
speed through profiling impractical.
Passive cooling strategy. Instead, SoCFlow+ uses a more

aggressive and passive energy management strategy: in
most of the training time, SoCFlow+ uses a relatively low
fan speed (i.e., 3,250 in the above case) to reduce energy
consumption; when the SoCs experience underclocking,
SoCFlow+ boosts the fan speed to cool down the devices.
Such a passive strategy makes SoCFlow+ applicable to
ubiquitous scenarios, disregarding the underlying hardware
and workloads. Furthermore, it is even more energy efficient
than using a static, “oracle” fan speed. The rationale is based
on a key observation: it takes much time (tens of minutes)
for the SoC-Cluster to go overheated from a relatively low
temperature. As shown in Figure 7 (green line), it takes
about 10–12 minutes to underclock when training the VGG-
11 model on 40 SoCs, while cooling the SoCs only needs
2–3 minutes. Such a phenomenon motivates our passive

0 2 4 6 8 10 12 14
Time (minutes)

0

10

20

30

40

50

60

Po
w

er
 (W

)

Response

baseline
ours
Energy benifits
Energy waste

28

30

32

34

36

38

40

Te
m

pe
ra

tu
re

 (°
C

)

Threshold: 35°C

Temperature

Fig. 7. The benefits of the passive cooling strategy. Notably, the SoC
temperature API operates with a minimum granularity of 0.5◦C.

training-cooling co-design. SoCFlow+ sets the the temper-
ature threshold as 35◦C to avoid obvious underclocking
(5% performance decline). When the SoC temperature rises
higher than 35◦C, SoCFlow+ will respond and increase the
fan speed to cool the SoC-Cluster.

Underclocking-aware training re-balancing. To further
mitigate the training performance degradation caused by
the above passive cooling design, SoCFlow+ re-balances the
workloads both within and across SoC groups. To illustrate
how underclocking problem affects the training efficiency,
we first give per-iteration training time formulation, as
follows.

Titer = max{Ti, i ∈ communication group J } (7)

Ti = max{TCal
k + T sync

k , k ∈ SoC group Gi} (8)

where TCal
k , T sync

k , and Ti are SoC k’s calculation and
synchronization time, and SoC group Gi’s training time.
Typically, underclocking does not influence synchronization
since synchronization are mainly bound to network band-
width. To that end, the two most important factors are TCal

k ,
SoC’s calculation time within a group, and Ti, training time
across SoC groups.
• Within a group: SoCFlow+ re-balances workloads

into varying size portions by input data according to
SoCs’ compute capacity. Supposing SoCs’ capacity are
{C1, C2, · · · , Cn} and the total input data is D, the input
data that each SoC should train is

Di = D ∗ Ci∑n
k=1 Ck

(9)

Correspondingly, the gradients aggregation and parameter
update should change simultaneously according to input
data size.

Wt+1 = Wt −Opt(
1

n
∗

n∑
i=1

(gi ∗
Ci∑n

k=1 Ck
)) (10)

where Wt+1, Wt and Opt represents the t+1 iteration
weights, t iteration weights, and optimizer function, respec-
tively.

• Across groups: Since different SoC groups’ weight ag-
gregation is epoch grained, naively balancing workloads
will lead to accuracy degradation. Thus, SoCFlow+ re-
balances compute capacity for each SoC group rather than

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 9

TABLE 3
DNN models used in the experiments.

Model Dataset Learning methods

LeNet [67] EMNIST [68]

From scratch

Fashion-MNIST [69]

VGG-11 [20] CIFAR-10 [43]
CelebA [70]

ResNet-18 [29] CIFAR-10
CelebA

MobileNet V1 [71] CIFAR-10
ResNet-50 [29] CINIC-10 [72] Transfer learning

workloads. Our observation is that SoCs in one physical
group are connected to the NIC through star topology [66],
thus homogeneous and position-independent in network
communication but with heterogeneous underclocking per-
formance. That means supposing 5 SoCs S1, S2, S3, S4, S5

in one physical group, an SoC group {S1, S2, S3, S4} is
equivalent to {S4, S3, S2, S1}, and even {S1, S2, S4, S5}
when only considering network communication. To that
end, reordering the SoC sequence in the physical group will
not break the sequential mapping’s optimal property but can
mitigate SoC groups’ underclocking heterogeneity.

• Implementation: After each epoch’s training, each SoC
records its total calculation time and sends them to the
global scheduler. The global scheduler analyzes each SoC’s
status and generates the corresponding workload partition
and SoC’s sequence of one physical group to re-balance the
training workload.

4 EVALUATION

4.1 Implementation and Setups

We have fully implemented SoCFlow+ with 5.2k LoC in
C/C++. The prototype is a standalone framework support-
ing models exported from TensorFlow [33] and Pytorch [62].
SoCFlow+ leverages MNN [32] (the most lightweight on-
device training framework) as the CPU backend and Mand-
heling [12] as the NPU backend. We follow PyTorch to
implement gradient synchronization, such as layer-by-layer
computing-communication overlapping, and aggregation in
the backward pass and optimizer. All the network commu-
nication, including Ring-AllReduce, parameter server, and
federated learning, are implemented over TCP protocol.
SoCFlow+ uses a wired network as the SoCs are cross-
connected directly through routers using SAS [73] instead
of mobile/wireless network. Parameters and weights aggre-
gation through CPU and NPU are over shared memory for
efficiency. In addition, we have implemented two key op-
timizations to make SoCFlow+ more efficient and practical:
(1) Gradient computing-communication overlap to mitigate
synchronization delays; (2) Underclocking-aware workload
re-balancing to address potential performance degradation.
Hardware setup. We test the performance of SoCFlow+ on
the SoC-Cluster as discussed in §2. All devices run Android
OS 10. By default, we always run the baselines on 4 BIG
CPU cores. The CPU frequency is controlled by the OS’s
dynamic voltage and frequency scaling (DVFS) controller.
The physical, logical, and communication groups used in
the experiments are 5, 8, and 2, respectively.

Models and datasets. We test with a range of typical
CNN models with various datasets: LeNet [43], VGG-
11 [20], ResNet-18/50 [29], and MobileNet V1 [71], as
listed in Table 3. The input data for LeNets are either
EMNIST or Fashion-MNIST (input size 28*28), while for
VGG-11, ResNet18 and MobileNet V1 are either CIFAR-10
or Celeba (input size 32*32). In addition to training from
scratch, SoCFlow+ also evaluates the transfer learning sce-
narios: finetuning on CIFAR-10 while pre-trained on CINIC-
10 dataset (same categories with 40k more images) with
ResNet-50. We choose small to medium-sized models since
the models trained on edge servers are often to be deployed
on end devices.
Hyper-parameter settings. SoCFlow+ employs a stan-
dard data-parallel training approach. Common hyper-
parameters, such as batch size and learning rate, are selected
following conventions in the literature [60], [61], [36], [62].
Specifically, the batch size is set to 64, and the learning rate
is initialized at 0.01, with a cosine decay schedule applied
for VGG-11 and ResNet-18 models. A unique aspect of
SoCFlow+ is the handling of inter-group communication
intervals, which is not commonly addressed in existing
works. As detailed in §3.1, SoCFlow+ initializes the commu-
nication frequency at 4, corresponding to a communication
interval of 0.25 epochs. Additionally, SoCFlow+ employs
a half decay strategy for communication frequency, similar
to the learning rate decay method described in previous
studies [55], [56]. The decay occurs every 10 epochs until it
reaches the minimum communication frequency value, e.g.,
0.5 (2 epochs) in the majority of cases.
Baselines. We compare SoCFlow+ with 6 baselines which
can be divided into two categories:

• Distributed machine learning baselines (1) Parameter
Server (PS): the traditional FP32-based centralized aggrega-
tion method [36]. (2) Ring-AllReduce (RING): the traditional
FP32-based allreduce training method following the work-
flow of Horovod [24]. (3) HiPress [34]: a compression-aware
gradient synchronization framework for data-parallel DNN
training. It uses DGC [74] as the sparsification compression
algorithm. (4) 2D parallelism [38] (2D-Paral): a hierarchi-
cal topology with node grouping. Across groups, it exploits
Ring-AllReduce-based data parallelism; within a group, it
exploits pipeline parallelism as PipeDream [23]. We do not
compare 3D parallelism [38] as its tensor parallelism is more
suitable for large models like GPT3 [75], while SoCFlow+ is
designed for small to medium-sized models on edges.

• Federated learning baselines (1) Federated learning
(FedAvg): the traditional FP32-based federated learning
protocol [37]. (2) Tree-aggregation-based hierarchical feder-
ated learning (T-FedAvg): It divides SoC clients into several
groups and exploits tree-based hierarchical aggregation fed-
erated learning protocol [35], [31] with FedAvg algorithm.
Both of the baselines have been implemented within the
context of independent and identically distributed (IID)
settings. To be noted, FL baselines also adopt the parameter
server architecture, but aggregate models in a less frequent
manner, e.g., per batch vs. per epoch.

To make the comparison fair, all baselines are enhanced
with the two optimizations in §4.1 if applicable.
Metrics. We mainly measure convergence accuracy, training
time, and energy consumption during training. The energy

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 10

TABLE 4
A summary of end-to-end training convergence accuracy. ”Acc.”: accuracy; ”Degrad.”: accuracy degradation.

Model Local PS RING 2D-Paral HiPress FedAvg Tree-FedAvg Ours
Acc. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad. Acc. Degrad.

MobileNet 88.5 87.9 -0.6 87.9 -0.6 87.9 -0.6 87.9 -0.6 85.4 -3.1 85.4 -3.1 88.7 0.2
VGG11 84.5 84.4 -0.1 84.4 -0.1 84.4 -0.1 84.4 -0.1 80.4 -4.1 80.4 -4.1 82.2 -2.3
ResNet18 87.7 87.3 -0.4 87.3 -0.4 87.3 -0.4 87.3 -0.4 82.1 -5.6 82.1 -5.6 84.5 -3.2
VGG11-CelebA 96.9 96.9 0 96.9 0 96.9 0 96.9 0 96.8 -0.1 96.8 -0.1 97.1 0.2
Resnet18-CelebA 97.3 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.4 0.1 97.2 -0.1
LeNet5-EMNIST 87.5 87.6 0.1 87.6 0.1 87.6 0.1 87.6 0.1 85.6 -1.9 85.6 -1.9 87.7 0.2
Lenet-FMNIST 91.6 91.6 0 91.6 0 91.6 0 91.6 0 90.7 -0.9 90.7 -0.9 91.1 -0.5
ResNet50-Finetune 69.9 69.9 0 69.9 0 69.9 0 69.9 0 x x x x 68.9 -1

Average degradation -0.16 -0.16 -0.16 -0.16 -2.23 -2.23 -0.81

MobileNet

101

102

La
te

nc
y

(h
ou

r)

Idle time

VGG11
100

101

102

Idle time

ResNet18
100

101

102

Idle time

VGG11-Celeba

100

101

102

Idle time

ResNet18-Celeba

100

101

102

La
te

nc
y

(h
ou

r)

Idle time

LeNet5-EMNIST

100

101

102

Idle time

LeNet5-FMNIST

10−1

100

101
Idle time

ResNet50-Finetune

100

101
Idle time

X X

PS RING HiPress 2D-Paral FedAvg T-FedAvg Ours

Fig. 8. End-to-end training time up to convergence under different training scenarios.

MobileNet

103

104

En
er

gy
 (K

J)

VGG11

103

104

ResNet18

103

104

105

VGG11-Celeba
102

103

104

ResNet18-Celeba102

103

104

En
er

gy
 (K

J)

LeNet5-EMNIST

102

103

104

LeNet5-FMNIST
101

102

103

ResNet50-Finetune
102

103

X X

PS RING HiPress 2D-Paral FedAvg T-FedAvg Ours

Fig. 9. End-to-end training energy consumption up to convergence under different training scenarios.

consumption is calculated through SoC-Cluster’s control
board power management system. All experiments are re-
peated three times and we report the average numbers.

4.2 End-to-end Performance
Overall performance. We comprehensively investigate the
end-to-end training performance of SoCFlow+ using 32
SoCs. The convergence accuracy, training time, and energy
consumption of the 32 SoCs are illustrated in Table 4,
Figure 8, and Figure 9. Except for MobileNet V1 uses a
global batch size of 256, other models all use 64. Our key
observation is that SoCFlow+ consistently and remarkably
outperforms other baselines on training time and energy
consumption with negligible accuracy loss.

• Training time of SoCFlow+ v.s. distributed machine learn-
ing baselines. Compared with industrial baselines, like PS

and RING, SoCFlow+ achieves a 94.4–740.7× and 14.8–
143.7× speedup, respectively, as shown in Figure 8, with
negligible accuracy degradation, e.g., ¡1%, in most cases,
as shown in Table 4. Those benefits from our group-wise
parallelism with delayed aggregation and mixed-precision
data-parallel training algorithm. The first technique can
reduce communication overhead, while the second one can
exploit NPU fully without influencing accuracy.

Besides, compared with state-of-the-art baselines,
HiPress, and 2D-Paral, SoCFlow+ can still reduce train-
ing time by 7.4–98.2× and 4.4–50.4×, respectively. That is
because although such baselines can decrease communica-
tion volume or increase parallelism, they still cannot avoid
inter-PCB communication contention. While SoCFlow+’s
group-wise parallelism with delayed aggregation can ex-
ploit logical-to-physical topology mapping and communica-

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 11

8 12 16 20 24 28 32
MobileNet

101

102
Tr

ai
ni

ng
 ti

m
e

(h
)

8 12 16 20 24 28 32
VGG11

100

101

102

8 12 16 20 24 28 32
ResNet18

101

103

8 12 16 20 24 28 32
VGG11-Celeba

100

101

102

8 12 16 20 24 28 32
ResNet18-Celeba

100
101
102

Tr
ai

ni
ng

 ti
m

e
(h

)

8 12 16 20 24 28 32
LeNet5-EMNIST

100

101

102

8 12 16 20 24 28 32
LeNet5-FMNIST

10−1

100

101

8 12 16 20 24 28 32
ResNet50-Finetune

100

101

PS RING HiPress 2D-Paral FedAvg T-FedAvg Ours

Fig. 10. Elapsed training time taken to reach same target accuracy under various SoC numbers.

tion planning to mitigate with no network contention when
synchronizing weights.

Last, SoCFlow+ guarantees that all training tasks finish
within two hours smaller than the SoC-Cluster’s idle time
(below the dark red line in Figure 8) so that the model can
be updated and applied to cloud applications every day;
while no distributed machine learning baselines can satisfy
such strict deadline. Therefore, SoCFlow+ can both boost
training efficiency and be practical in use.

• Energy consumption of SoCFlow+ v.s. distributed machine
learning baselines. As shown in Figure 9, SoCFlow+’s im-
provements in energy consumption are also impressive as
in training speed. SoCFlow+ can reduce energy consump-
tion by 20.0–158×, 1.9–60.2×, 3.1–144.3×, and 2.6–49.8× for
PS, RING, HiPress and 2D-Paral, respectively. That is
because (1) the existing distributed deep learning algorithms
lead to long-time synchronization communication, wasting
lots of energy. (2) SoCFlow+ can leverage energy-efficient
NPU to accelerate training speed and reduce energy con-
sumption.

• SoCFlow+ v.s. federated learning baselines. Compared
with the federated learning method, SoCFlow+ achieves an
accuracy improvement of 0.1–3.3%. The accuracy enhance-
ment is attributed to SoCFlow+ mitigating the precision
loss associated with INT8-based training by offloading a
portion of the training workloads to the CPU in FP32 format.
Additionally, SoCFlow+ substantially reduces training time,
achieving an average speedup of 2.85x for FedAvg and
2.17x for T-FedAvg. This efficiency gain can be primarily at-
tributed two reasons: (1) While federated learning baselines
are not constrained by communication bottlenecks, they
grapple with gradient staleness and require more epochs
to converge to the same accuracy. SoCFlow+ addresses this
issue by implementing a synchronized gradient updating
approach. (2) SoCFlow+ harnesses NPUs to accelerate the
training process while maintaining high accuracy.

In addition, SoCFlow+ reduces energy consumption
by 2.1–9.9 and 1.7–11.0×, compared with FedAvg and
T-FedAvg, respectively, as shown in Figure 9. The benefits
come from the high energy efficiency of NPU and acceler-
ated convergence.

4.3 Scalability
We comprehensively investigate the scalability training per-
formance of SoCFlow+ under 8, 16, and 32 SoCs. Figure 10
shows the training time trend reaching the same accu-
racy (99% relative convergence accuracy, e.g., 87% for Mo-
bileNet V1) when involving more SoCs in learning tasks.
We do not include the results of ResNet50-Finetune using
FL-based baselines, as it did not converge. Except for Mo-
bileNet V1 uses a global batch size of 256, other models all
use 64. It shows that SoCFlow+ consistently outperforms
all baselines from 8 to 32 SoCs, and its benefits are more
prominent with the increasing SoC number.

SoCFlow+ reduces training time on 8 SoCs by 83.3×,
8.89×, 2.31×, 36.4×, 2.51×, and 53.8× on average for PS,
RING, HiPress, 2D-Paral, FedAvg, and T-FedAvg, re-
spectively; while the speedups for 32 SoCs are 474.8×,
49.3×, 2.35×, 52.8×, 3.1× and 35.7× correspondingly, which
are 2.6 × larger than that of 8 SoCs on average. That is
because our group-wise parallelism with delayed aggre-
gation is flexible and scalable, not increasing the network
congestion with the SoC number increasing.

To be noted, SoCFlow+ is mostly designed for DNN
training on a single SoC-Cluster server, thereby the scala-
bility analysis is limited to the number of mobile SoCs per
server. In the future, we plan to extend SoCFlow+ to span
multiple SoC-Clusters to further expand the scalability.

4.4 Comparison with Traditional Datacenter GPU
In this section, we examine the performance of SoCFlow+ in
comparison to traditional datacenter GPUs. It’s important to
note that our objective in these experiments is not to present
SoC-Cluster as a superior alternative to traditional datacen-
ter GPUs. Rather, our goal is to illustrate how SoCFlow can
effectively utilize the available resources in SoC-Clusters,
particularly when dealing with small models as the focus of
this study.

We conducted a comprehensive assessment on the end-
to-end training performance of SoCFlow+ under 60 SoCs, in
contrast to a standard server GPUs, using PyTorch, as shown
in Figure 11. We compared Snapdragon 865 SoC with the
NVIDIA V100, and the latest Snapdragon 8gen1 SoC with
the NVIDIA A100. Our selection is mainly based two main
reasons: (1) Relatively consistent performance gap in latest

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 12

VGG-11ResNet
-18LeNet

LeNet-F
MNIST

Model

0.0
0.2
0.4
0.6
0.8

Tr
ai

ni
ng

 ti
m

e
(h

)
Ours
V100

(a) Training time: 865 v.s. V100

VGG-11ResNet
-18LeNet

LeNet-F
MNIST

Model

0.0
0.1
0.2
0.3
0.4
0.5

Tr
ai

ni
ng

 ti
m

e
(h

)

Ours
A100

(b) Training time: 8gen1 v.s. A100

VGG-11ResNet
-18LeNet

LeNet-F
MNIST

Model

0
2
4
6
8

En
er

gy
 (1

00
K

J) Ours
V100

(c) Energy: 865 v.s. V100

VGG-11ResNet
-18LeNet

LeNet-F
MNIST

Model

0.0

0.4

0.8

1.2

En
er

gy
 (1

00
K

J) Ours
A100

(d) Energy: 8gen1 v.s. A100

Fig. 11. Training time and energy consumption comparison between
SoCFlow+ and traditional datacenter GPUs using PyTorch.

versions. Despite the Snapdragon 865 SoC being introduced
later than the V100, it is noteworthy that the performance
improvements of mobile SoCs outpaces those in server
GPUs. For instance, the NPU in the 8gen2 (2022) exhibits an
18× increase in performance compared to the Snapdragon
865 SoC [76], while such performance gain from the H100
(latest NVIDIA GPU) to the V100 is only about 9×. (2) It is
important to acknowledge that data center-level GPUs such
as the V100 are not primarily designed for training small
models that often exhibit low GPU utilization. Nonetheless,
they are frequently adopted in edge cloud environments to
address a variety of training scenarios, including training
small-to-medium-sized models. Our experiments show that
SoCFlow+ achieves similar training speed but with up to
10.23× reduced energy consumption without comprising
the convergence accuracy.

Compared to the V100 GPU, SoCFlow+ achieves a
speedup of 0.80–2.79× for the VGG11-CIFAR10, ResNet18-
CIFAR10, LeNet-EMNIST, and LeNet-FMNIST models. This
is due to SoCFlow+’s ability to tap into the computing
power of the 60-SoC heterogeneous processors and break
network limits to accelerate training speed. In addition,
SoCFlow+ consumes 2.31×, 2.81×, 2.96×, and 10.23× less
energy than the V100, respectively. This is because mobile
SoCs are generally more energy-efficient than the V100,
especially for mobile NPU, and SoCFlow+ can fully utilize
this advantage. The results of the A100 also demonstrates
analogous outcomes.

4.5 Breakdown analysis of training time
In this section, we conduct a comprehensive investigation
into the breakdown of training time consumption. Typically,
training time comprises three main components: gradients
computing (Compute), gradients/weights synchronization
(Sync), and parameter updates (Update). The breakdown
results for VGG-11 and ResNet-18 under 32 SoCs are il-
lustrated in Figure 12. SoCFlow+ achieves a delicate bal-
ance between distributed machine learning baselines and

Ours RING HiPress 2D-Paral FedAvg0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 ti
m

e
(H

ou
r)

Compute Sync Update

(a) VGG-11

Ours RING HiPress 2D-Paral FedAvg0.0

0.5

1.0

Tr
ai

ni
ng

 ti
m

e
(H

ou
r)

Compute Sync Update

(b) ResNet-18

Fig. 12. A breakdown training time under VGG-11 and ResNet-18 mod-
els on CIFAR-10.

0 4 8 16 32
Training SoC Number

0

10

20

30

FP
S

VGG-11 ResNet-18

(a) Viking Village

0 4 8 16 32
Training SoC Number

0

10

20

FP
S

VGG-11 ResNet-18

(b) Sewerage

Fig. 13. The coexistence of gaming performance (FPS) with training on
different numbers of SoCs. “0” means no training workloads.

federated learning baselines approaches by trading off
weights synchronization time with accuracy.

The synchronization in RING consistently occupies the
most time (e.g., 81% for VGG-11) due to network con-
tention. Two communication-efficient baselines HiPress
and 2D-Paral manage to reduce the synchronization over-
head to an average of 76.5% and 71.5% on average, respec-
tively. Nevertheless, the bottleneck in these two baselines
still persists in communication since they synchronize inter-
group (per-batch) gradient communication simultaneously,
contending for the physical board NIC. FedAvg’s synchro-
nization time is notably lower, only 16.5–34.7%, owing to
its epoch-based synchronization strategy. SoCFlow+’s syn-
chronization time falls in the middle of distributed machine
learning baselines and federated learning baseline, account-
ing for only 46% of the total training time, attributed to its
efficient hierarchical weight aggregation.

4.6 Coexistence performance

In this section, we conduct a thorough investigation into the
coexistence of gaming performance (FPS) with training on
different numbers of SoCs. We evaluate SoCFlow+ with two
open-sourced Unity games: Sewerage (2560×1440) [77] and
Viking Village (1920×1080) [78], as illustrated in Figure 13.
The training workloads of SoCFlow+ have a negligible
impact on gaming performance.

The coexistence of gaming performance with VGG11
and ResNet18 training workloads results in only a 1.1 FPS
reduction for the Sewerage game, while the Vikingvillage
game experiences a reduction of 0.6–1.7 FPS. This minimal
degradation can be attributed to SoCFlow+ utilizing only
the idle mobile SoCs for training, thereby avoiding compe-
tition for computational resources with gaming SoCs.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 13

VGG-11
Model

0

5

10

Tr
ai

ni
ng

 ti
m

e
(h

)

ResNet-18
Model

0

20

40

Tr
ai

ni
ng

 ti
m

e
(h

)

RING + Group + Comm + Mapping + Plan + Mixed + Cooling
RING + Group + Comm + Mapping + Plan + Mixed
RING + Group + Comm + Mapping + Plan
RING + Group + Comm + Mapping

RING + Group + Comm
RING + Group
RING

Fig. 14. Ablation study of SoCFlow+.

0.0 0.1 0.2 0.3 0.4 0.5
Time (hours)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Ours-FP32
Ours-Mixed
Ours-Half
Ours-INT8

(a) VGG-11

0.00 0.05 0.10 0.15
Time (hours)

0

20

40

60

80

A
cc

ur
ac

y
(%

)

Ours-FP32
Ours-Mixed
Ours-Half
Ours-INT8

(b) Resnet-18

Fig. 15. Ablation study of the mixed-precision data-parallel training algo-
rithm.

4.7 Ablation Study
Overall techniques. Figure 14 demonstrates the benefits
of each individual technique in SoCFlow+. The rightmost
bar is the same as baseline RING, while the leftmost one
is SoCFlow+. The four steps in §3.1, the data-parallel
mixed-precision training algorithm in §3.2, and the passive
training-cooling co-design in §3.3 are represented by Group,
Comm Mapping, Plan, Mixed, and Cool correspondingly.
First, the group-wise parallelism with delayed aggregation
can mitigate the network contention, achieving a 3.2–3.8×
training speedup. Besides, the data-parallel mixed-precision
training algorithm reduces training time by 3.53–5.78× be-
cause it can exploit both the CPU and NPU to train a
model in parallel. Last, the passive training-cooling co-
design achieves a 1.59–1.77× training speedup since it can
mitigate the performance degradation caused by processor
underclocking with minimal energy overhead.
Mixed-precision data-parallel training algorithm. Fig-
ure 15 further shows how SoCFlow+’s mixed-precision
data-parallel training algorithm can improve convergence
speed and accuracy. SoCFlow+ can achieve both high
accuracy, similar to Ours-FP32, and high training speed,
similar to Ours-INT8. That is because, with the help of the
INT8 model confidence hyper-parameter α and compute
power ratio β, SoCFlow+ can feed the maximum portion
of data to the NPU INT8 model to improve training speed
without affecting the convergence accuracy. Specifically, α
will decrease with training progresses, which means that the
INT8 model is less and less confidential. At the beginning of
training, more data is trained on the INT8 model to improve
training speed with rapid improvement in accuracy as Ours-
INT8 does. At the end of the training, more data to the FP32
model to ensure higher accuracy, similar to Ours-FP32. As a

result, SoCFlow+ can incorporate the advantages of Ours-
INT8 and Ours-FP32 methods. On the contrary, the ad-hoc
method, Ours-Half, cannot dynamically adjust the portion
of input data fed into the CPU and NPU models, so its
training speed is slower than Ours-INT8 and the accuracy is
lower than Ours-FP32, missing optimization opportunities
that SoCFlow+ can exploit.

5 DISCUSSION

SoCFlow+ with more advanced SoCs. The current proto-
type of SoCFlow+ is based on the Snapdragon 865. Recent
advancements have highlighted a compelling trend in mo-
bile SoC NPUs, wherein their capabilities have expanded
significantly. These NPUs now concurrently accommodate a
diverse range of low-precision data formats, including INT4,
INT8, INT16, and FP16 [79], [80], [76]. These versatile data
formats cater to a spectrum of application scenarios, span-
ning from image classification to keyword detection. For in-
stance, the latest NPUs in Snapdragon 8gen2 support INT8
and FP16 operations, yielding a remarkable 18× speedup
over the Snapdragon 865 employed in our experimental
setup [76]. Given that SoCFlow+ is a distributed training
framework orthogonal to low-precision training algorithm
and leverages two main techniques to train deep learning
models fast and scalably without being influenced by the
network bottleneck and the accuracy loss of low-precision
training algorithm, the recent developments of mobile NPUs
opening up more opportunities for SoCFlow+ to train rela-
tively larger DNNs on SoC-Cluster. To be noted, even with
more advanced SoCs released, the design of SoCFlow+ will
not become obsolete since the legacy SoCs still need can be
harvested to reduce the manufacturing of new SoCs.
Applying SoCFlow+ to larger models. SoCFlow+ is moti-

vated to leverage the idle resources of SoC-Cluster for edge-
based model training and adaptation. Thereby, SoCFlow+
is mainly evaluated on small to medium-sized DNNs.
However, with growing training demand of larger models
like language models, SoC-Cluster and SoCFlow+ could be
good complementary to datacenter-scale LLM training [81],
[82], [83], [84]. While pre-training LLMs on SoC-Cluster is
not yet feasible, we expect it to be affordable for down-
stream fine-tuning [85], [86]. In future work, we plan to
explore the applicability of SoCFlow+ to large language
models, which will involve further optimizing the commu-
nication and computation strategies within SoCFlow+ to
handle the increased demands of these models.

6 RELATED WORK

On-device training. Recently, there has been a trend to train
a DNN model on mobile devices locally [7], [49], [10], [11],
[12], [13], [87]. DeepType [13] proposes incremental training
to effectively train a personalized deep learning model from
a global model. Melon [11] reduces memory usage by a
novel lifetime-aware memory pool and memory-calibrated
progressive recomputation. Some of them tried to lever-
age GPU/DSP offloading to accelerate training speed and
reduce training energy consumption [26], [12]. SoCFlow+
is orthogonal to and compatible with those system-level
optimizations.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 14

Mixed-precision DNN training has been proposed to re-
duce training cost [88], [89], [90]. These approaches use
lower-precision formats, such as INT8 and INT16, to repre-
sent the weights and activation generated during training.
UI8 [63] further proposes a cosine-distance-based gradi-
ent quantization error estimation technique and direction-
aware clip function to minimize gradient quantization er-
ror. SoCFlow+’s data-parallel mixed-precision training al-
gorithm is built on them but algorithm-independent.
Distributed machine learning. Since training DNN mod-
els is too time-consuming, nowadays, many distributed
training approaches are proposed to speed up the training
process, including data parallelism [60], [61], [36], [62],
model parallelism [91], hybrid parallelism [92], and pipeline
parallelism [93], [94], [23], [95], [96]. Besides, many solutions
have been proposed to optimize communication efficiency
between different workers [97], [98], [99], [100]. SoCFlow+
is motivated by those efforts and is the first framework
to support distributed training atop edge SoC-Cluster. Fur-
thermore, some researchers propose asynchronous or stale
synchronous parallel (SSP) aggregation which allows dis-
tributed workers to read older, stale versions of parameters
from a local cache, instead of waiting to get them from a
central storage [101], [102], [103], [104]. This approach can
reduce significantly synchronization waiting time while still
providing correctness guarantees.
Federated learning is also an emerging machine-learning
paradigm [49], [9], [10], [37] built atop on-device training
and requires many clients to train a DNN model collabora-
tively. Most of the prior works focus on model compression
techniques to address the communication bottleneck, while
some propose tree aggregation [35] and LAN-WAN aggre-
gation [105] to save network traffic. Those studies inspire
SoCFlow+ group-wise parallelism with delayed aggrega-
tion. One key difference is that FL often handles non-IID
data distribution, while SoCFlow+ is designed for common
distributed training scenarios where the developers tend to
partition the data across SoCs in IID manner.
Junkyard Computing. A few recent works [106], [107] have
explored the opportunity of recycling obsolete smartphones
to build a computing cluster. However, they are mostly
prototyped with a very limited number of devices and
tested with microbenchmarks. In contrast, SoCFlow+ aims
to develop production-ready, widely deployed hardware.
Most of the SoCFlow+’s techniques are directly applicable
to junkyard computing, though unique challenges need to
be addressed, such as the low reliability of obsolete smart-
phones, even scarcer network, and thermal control.

7 CONCLUSION

In this paper, we introduced SoCFlow+, a pioneering frame-
work designed to facilitate the efficient training of deep
learning models on SoC-Cluster servers. SoCFlow+ over-
comes the challenges posed by restricted cross-SoC network
bandwidth through the integration of two innovative strate-
gies: group-wise parallelism with delayed aggregation and
a data-parallel mixed-precision training algorithm. These
methodologies enable SoCFlow+ to deliver training perfor-
mance that is both efficient and scalable. Our comprehensive
experimental evaluation of SoCFlow+ reveals its superior

performance over existing methodologies in terms of train-
ing velocity while concurrently maintaining model accuracy.

ACKNOWLEDGMENTS

This work was supported by National Key R&D Program
of China (No.2022ZD0119103) and NSFC (No.62325201 and
No.62102045). Mengwei Xu and Gang Huang are the corre-
sponding authors.

REFERENCES

[1] “Soc-cluster.” https://www.vclusters.com/productinfo1.html,
2023.

[2] L. Zhang, Z. Fu, B. Shi, X. Li, R. Lai, C. Chen, A. Zhou, X. Ma,
S. Wang, and M. Xu, “More is different: Prototyping and ana-
lyzing a new form of edge server with massive mobile socs,”
USENIX ATC, 2024.

[3] L. Zhang, S. Wang, and M. Xu, “High-density mobile cloud
gaming on edge soc farms,” USENIX ATC, 2024.

[4] “X-cloud game pass.” https://www.xbox.com/en-US/xbox-
game-pass/cloud-gaming?xr=shellnav., 2022.

[5] “Smart camera.” https://www.qualcomm.com/products/
technology/processors/application-processors/qcs603, 2022.

[6] M. Xu, Z. Fu, X. Ma, L. Zhang, Y. Li, F. Qian, S. Wang, K. Li,
J. Yang, and X. Liu, “From cloud to edge: a first look at public
edge platforms,” in Proceedings of the 21st ACM Internet Measure-
ment Conference, 2021, pp. 37–53.

[7] “How apple personalizes siri without hoovering up your data.”
https://www.technologyreview.com/2019/12/11/131629/
apple-ai-personalizes-sirifederated-learning/, 2022.

[8] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan
et al., “Towards federated learning at scale: System design,”
Proceedings of Machine Learning and Systems, vol. 1, pp. 374–388,
2019.

[9] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays,
S. Augenstein, H. Eichner, C. Kiddon, and D. Ramage, “Fed-
erated learning for mobile keyboard prediction,” arXiv preprint
arXiv:1811.03604, 2018.

[10] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving
communication efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[11] Q. Wang, M. Xu, C. Jin, X. Dong, J. Yuan, X. Jin, G. Huang, Y. Liu,
and X. Liu, “Melon: Breaking the memory wall for resource-
efficient on-device machine learning,” 2022.

[12] D. Xu, M. Xu, Q. Wang, S. Wang, Y. Ma, K. Huang, G. Huang,
X. Jin, and X. Liu, “Mandheling: mixed-precision on-device dnn
training with dsp offloading,” in Proceedings of the 28th Annual In-
ternational Conference on Mobile Computing And Networking, 2022,
pp. 214–227.

[13] M. Xu, F. Qian, Q. Mei, K. Huang, and X. Liu, “Deeptype:
On-device deep learning for input personalization service with
minimal privacy concern,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 4, pp. 1–26,
2018.

[14] J. Han, Y. Ma, Q. Mei, and X. Liu, “Deeprec: On-device deep
learning for privacy-preserving sequential recommendation in
mobile commerce,” in Proceedings of the Web Conference 2021, 2021,
pp. 900–911.

[15] W. Li, Q. Xia, H. Cheng, K. Xue, and S.-T. Xia, “Vertical semi-
federated learning for efficient online advertising,” arXiv preprint
arXiv:2209.15635, 2022.

[16] O. A. Wahab, G. Rjoub, J. Bentahar, and R. Cohen, “Federated
against the cold: A trust-based federated learning approach to
counter the cold start problem in recommendation systems,”
Information Sciences, vol. 601, pp. 189–206, 2022.

[17] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “Dsp. ear:
Leveraging co-processor support for continuous audio sensing
on smartphones,” in Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems, 2014, pp. 295–309.

[18] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applica-
tions,” in Proceedings of the 15th Annual International Conference on
Mobile Systems, Applications, and Services, 2017, pp. 82–95.

https://www.vclusters.com/productinfo1.html
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming?xr=shellnav.
https://www.xbox.com/en-US/xbox-game-pass/cloud-gaming?xr=shellnav.
https://www.qualcomm.com/products/technology/processors/application-processors/qcs603
https://www.qualcomm.com/products/technology/processors/application-processors/qcs603
https: //www.technologyreview.com/2019/12/11/131629/apple- ai- personalizes- sirifederated-learning/
https: //www.technologyreview.com/2019/12/11/131629/apple- ai- personalizes- sirifederated-learning/

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 15

[19] F. Jia, D. Zhang, T. Cao, S. Jiang, Y. Liu, J. Ren, and Y. Zhang,
“Codl: efficient cpu-gpu co-execution for deep learning inference
on mobile devices,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services. Associ-
ation for Computing Machinery New York, NY, USA, 2022, pp.
209–221.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[21] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified
architecture for accelerating distributed dnn training in het-
erogeneous gpu/cpu clusters,” in 14th USENIX Symposium on
Operating Systems Design and Implementation, 2020, pp. 463–479.

[22] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania et al., “Pytorch
distributed: Experiences on accelerating data parallel training,”
arXiv preprint arXiv:2006.15704, 2020.

[23] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. De-
vanur, G. R. Ganger, P. B. Gibbons, and M. Zaharia, “Pipedream:
generalized pipeline parallelism for dnn training,” in Proceedings
of the 27th ACM Symposium on Operating Systems Principles, 2019,
pp. 1–15.

[24] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in tensorflow,” arXiv preprint arXiv:1802.05799,
2018.

[25] D. Cai, Q. Wang, Y. Liu, Y. Liu, S. Wang, and M. Xu, “Towards
ubiquitous learning: A first measurement of on-device training
performance,” in Proceedings of the 5th International Workshop on
Embedded and Mobile Deep Learning, 2021, pp. 31–36.

[26] A. Das, Y. D. Kwon, J. Chauhan, and C. Mascolo, “Enabling
on-device smartphone gpu based training: Lessons learned,” in
2022 IEEE International Conference on Pervasive Computing and
Communications Workshops and other Affiliated Events. IEEE, 2022,
pp. 533–538.

[27] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang,
Y. Ma, and X. Liu, “A comprehensive benchmark of deep learning
libraries on mobile devices,” in Proceedings of the ACM Web
Conference 2022, 2022, pp. 3298–3307.

[28] Q. Pei, S. Chen, Q. Zhang, X. Zhu, F. Liu, Z. Jia, Y. Wang, and
Y. Yuan, “Cooledge: hotspot-relievable warm water cooling for
energy-efficient edge datacenters,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 814–829.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[30] V. Chandrasekaran, S. Banerjee, D. Perino, and N. Kourtellis,
“Hierarchical federated learning with privacy,” arXiv preprint
arXiv:2206.05209, 2022.

[31] N. Mhaisen, A. A. Abdellatif, A. Mohamed, A. Erbad, and
M. Guizani, “Optimal user-edge assignment in hierarchical fed-
erated learning based on statistical properties and network
topology constraints,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 1, pp. 55–66, 2021.

[32] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang,
Z. Cui, Y. Cai, T. Yu et al., “Mnn: A universal and efficient
inference engine,” arXiv preprint arXiv:2002.12418, 2020.

[33] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow:
a system for large-scale machine learning.” in 12th USENIX
Symposium on Operating Systems Design and Implementation, 2016,
pp. 265–283.

[34] Y. Bai, C. Li, Q. Zhou, J. Yi, P. Gong, F. Yan, R. Chen, and
Y. Xu, “Gradient compression supercharged high-performance
data parallel dnn training,” in Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles, 2021, pp. 359–375.

[35] K. Jayaram, V. Muthusamy, G. Thomas, A. Verma, and M. Purcell,
“Adaptive aggregation for federated learning,” arXiv preprint
arXiv:2203.12163, 2022.

[36] M. Li, D. G. Andersen, A. J. Smola, and K. Yu, “Communication
efficient distributed machine learning with the parameter server,”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[37] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A.
y Arcas, “Communication-efficient learning of deep networks
from decentralized data,” in Artificial intelligence and statistics.
PMLR, 2017, pp. 1273–1282.

[38] J. Song, J. Yim, J. Jung, H. Jang, H.-J. Kim, Y. Kim, and J. Lee,
“Optimus-cc: Efficient large nlp model training with 3d par-
allelism aware communication compression,” in Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2023, pp.
560–573.

[39] M. Xu, L. Zhang, and S. Wang, “Position paper: Renovating edge
servers with arm socs,” in 2022 IEEE/ACM 7th Symposium on Edge
Computing. IEEE Computer Society, 2022, pp. 216–223.

[40] T. Lite, “Sharing a gpu between mpi processes: multiprocess ser-
vice(mps).” https://docs.nvidia.com/deploy/mps/index.html,
2019.

[41] W. Xiao, S. Ren, Y. Li, Y. Zhang, P. Hou, Z. Li, Y. Feng, W. Lin, and
Y. Jia, “Antman: Dynamic scaling on gpu clusters for deep learn-
ing,” in 14th USENIX Symposium on Operating Systems Design and
Implementation, 2020, pp. 533–548.

[42] W. Zhang, B. Chen, Z. Han, Q. Chen, P. Cheng, F. Yang, R. Shu,
Y. Yang, and M. Guo, “Pilotfish: Harvesting free cycles of cloud
gaming with deep learning training,” in 2022 USENIX Annual
Technical Conference, 2022, pp. 217–232.

[43] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[44] M. Wang, S. Rasoulinezhad, P. H. Leong, and H. K.-H. So, “Niti:
Training integer neural networks using integer-only arithmetic,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33,
no. 11, pp. 3249–3261, 2022.

[45] “Massively scale your deep learning training with nccl 2.4.”
https://developer.nvidia.com/blog/massively-scale-deep-
learning-training-nccl-2-4/, 2022.

[46] “Optimize training performance with reduction server on
vertex ai.” https://cloud.google.com/blog/topics/developers-
practitioners/optimize-training-performance-reduction-server-
vertex-ai, 2022.

[47] N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir,
and B. Van Essen, “Aluminum: An asynchronous, gpu-aware
communication library optimized for large-scale training of deep
neural networks on hpc systems,” Lawrence Livermore National
Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2018.

[48] X. Yang, “Shuffle-exchange brings faster: Reduce the idle time
during communication for decentralized neural network train-
ing,” arXiv preprint arXiv:2007.00433, 2020.

[49] D. Cai, Y. Wu, S. Wang, F. X. Lin, and M. Xu, “Autofednlp:
An efficient fednlp framework,” arXiv preprint arXiv:2205.10162,
2022.

[50] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous de-
centralized parallel stochastic gradient descent,” in International
Conference on Machine Learning. PMLR, 2018, pp. 3043–3052.

[51] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” Advances
in neural information processing systems, vol. 24, 2011.

[52] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large
minibatch sgd: Training imagenet in 1 hour,” arXiv preprint
arXiv:1706.02677, 2017.

[53] E. Hoffer, I. Hubara, and D. Soudry, “Train longer, generalize
better: closing the generalization gap in large batch training
of neural networks,” Advances in neural information processing
systems, vol. 30, 2017.

[54] Y. You, Y. Wang, H. Zhang, Z. Zhang, J. Demmel, and C.-J. Hsieh,
“The limit of the batch size,” arXiv preprint arXiv:2006.08517,
2020.

[55] R. Ge, S. M. Kakade, R. Kidambi, and P. Netrapalli, “The step
decay schedule: A near optimal, geometrically decaying learning
rate procedure for least squares,” Advances in neural information
processing systems, vol. 32, 2019.

[56] K. You, M. Long, J. Wang, and M. I. Jordan, “How does learn-
ing rate decay help modern neural networks?” arXiv preprint
arXiv:1908.01878, 2019.

[57] “Greedy stays ahead.” http://www.cs.cornell.edu/courses/
cs482/2003su/handouts/greedy ahead.pdf., 2022.

[58] P. M. Pardalos, T. Mavridou, and J. Xue, “The graph coloring
problem: A bibliographic survey,” in Handbook of combinatorial
optimization. Springer, 1998, pp. 1077–1141.

[59] A. Bar-Noy and G. Kortsarz, “Minimum color sum of bipartite
graphs,” Journal of Algorithms, vol. 28, no. 2, pp. 339–365, 1998.

https://docs.nvidia.com/deploy/mps/index.html
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://developer.nvidia.com/blog/massively-scale-deep-learning-training-nccl-2-4/
https://cloud.google.com/blog/topics/developers-practitioners/optimize-training-performance-reduction-server-vertex-ai
https://cloud.google.com/blog/topics/developers-practitioners/optimize-training-performance-reduction-server-vertex-ai
https://cloud.google.com/blog/topics/developers-practitioners/optimize-training-performance-reduction-server-vertex-ai
http://www.cs.cornell.edu/courses/cs482/2003su/handouts/greedy_ahead.pdf.
http://www.cs.cornell.edu/courses/cs482/2003su/handouts/greedy_ahead.pdf.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 16

[60] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Communica-
tions of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[61] M. Li, “Scaling distributed machine learning with system and
algorithm co-design,” Ph.D. dissertation, PhD thesis, Intel, 2017.

[62] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,”
Advances in neural information processing systems, vol. 32, 2019.

[63] F. Zhu, R. Gong, F. Yu, X. Liu, Y. Wang, Z. Li, X. Yang, and
J. Yan, “Towards unified int8 training for convolutional neural
network,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 1969–1979.

[64] Y. Zhang, C. Li, and M. Pan, “Design and performance research
of integrated indirect liquid cooling system for rack server,”
International Journal of Thermal Sciences, vol. 184, p. 107951, 2023.

[65] B. Watson and V. K. Venkiteswaran, “Universal cooling of data
centres: a cfd analysis,” Energy Procedia, vol. 142, pp. 2711–2720,
2017.

[66] M. K. Mehmet-Ali, J. F. Hayes, and A. K. Elhakeem, “Traffic
analysis of a local area network with a star topology,” IEEE
Transactions on Communications, vol. 36, no. 6, pp. 703–712, 1988.

[67] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[68] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B.
McMahan, V. Smith, and A. Talwalkar, “Leaf: A benchmark for
federated settings,” arXiv preprint arXiv:1812.01097, 2018.

[69] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[70] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face
attributes in the wild,” in Proceedings of International Conference
on Computer Vision, December 2015.

[71] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[72] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J.
Storkey, “Cinic-10 is not imagenet or cifar-10,” arXiv preprint
arXiv:1810.03505, 2018.

[73] “Serial attached scsi.” https://en.wikipedia.org/wiki/Serial
Attached SCSI, 2019.

[74] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradi-
ent Compression: Reducing the communication bandwidth for
distributed training,” in The International Conference on Learning
Representations, 2018.

[75] A. Olmo, S. Sreedharan, and S. Kambhampati, “Gpt3-to-
plan: Extracting plans from text using gpt-3,” arXiv preprint
arXiv:2106.07131, 2021.

[76] “Ai benchmark.” https://ai-benchmark.com/ranking.html,
2023.

[77] “Sewer/underground — unity asset store.” https:
//assetstore.unity.com/packages/3d/environments/sewer-
underground-modularpack-v4-0-112692, 2022.

[78] “Viking village urp — unity asset store.” https:
//assetstore.unity.com/packages/essentials/tutorial-projects/
viking-village-urp-29140, 2022.

[79] “Snapdragon 8 gen 1.” https://www.qualcomm.com/
products/mobile/snapdragon/smartphones/snapdragon-8-
series-mobile-platforms/snapdragon-8-gen-1-mobile-platform,
2023.

[80] “Snapdragon 8 gen 2.” https://www.qualcomm.com/
products/mobile/snapdragon/smartphones/snapdragon-8-
series-mobile-platforms/snapdragon-8-gen-2-mobile-platform,
2023.

[81] M. Xu, W. Yin, D. Cai, R. Yi, D. Xu, Q. Wang, B. Wu, Y. Zhao,
C. Yang, S. Wang et al., “A survey of resource-efficient llm and
multimodal foundation models,” arXiv preprint arXiv:2401.08092,
2024.

[82] R. Yi, L. Guo, S. Wei, A. Zhou, S. Wang, and M. Xu, “Edgemoe:
Fast on-device inference of moe-based large language models,”
arXiv preprint arXiv:2308.14352, 2023.

[83] P. Zeng, Z. Ning, J. Zhao, W. Cui, M. Xu, L. Guo, X. Chen,
and Y. Shan, “The cap principle for llm serving,” arXiv preprint
arXiv:2405.11299, 2024.

[84] J. Yuan, C. Yang, D. Cai, S. Wang, X. Yuan, Z. Zhang, X. Li,
D. Zhang, H. Mei, X. Jia et al., “Mobile foundation model as

firmware,” in Proceedings of the 30th Annual International Confer-
ence on Mobile Computing and Networking, 2024, pp. 279–295.

[85] D. Cai, Y. Wu, S. Wang, F. X. Lin, and M. Xu, “Efficient federated
learning for modern nlp,” in Proceedings of the 29th Annual Inter-
national Conference on Mobile Computing and Networking, 2023, pp.
1–16.

[86] M. Xu, Y. Wu, D. Cai, X. Li, and S. Wang, “Fwdllm: Efficient
federated finetuning of large language models with perturbed
inferences,” USENIX ATC, 2024.

[87] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “On-edge multi-
task transfer learning: Model and practice with data-driven task
allocation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 6, pp. 1357–1371, 2020.

[88] R. Banner, I. Hubara, E. Hoffer, and D. Soudry, “Scalable methods
for 8-bit training of neural networks,” Advances in neural informa-
tion processing systems, vol. 31, 2018.

[89] X. Chen, X. Hu, H. Zhou, and N. Xu, “Fxpnet: Training a deep
convolutional neural network in fixed-point representation,” in
2017 International Joint Conference on Neural Networks. IEEE, 2017,
pp. 2494–2501.

[90] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect:
Training deep neural networks with binary weights during
propagations,” Advances in neural information processing systems,
vol. 28, 2015.

[91] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang et al., “Large scale dis-
tributed deep networks,” Advances in neural information processing
systems, vol. 25, 2012.

[92] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model
parallelism for deep neural networks.” Proceedings of Machine
Learning and Systems, vol. 1, pp. 1–13, 2019.

[93] S. Athlur, N. Saran, M. Sivathanu, R. Ramjee, and N. Kwatra,
“Varuna: scalable, low-cost training of massive deep learning
models,” in Proceedings of the Seventeenth European Conference on
Computer Systems, 2022, pp. 472–487.

[94] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant
neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

[95] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “Dnn: Achieving pre-
dictable distributed dnn training with serverless architectures,”
IEEE Transactions on Computers, vol. 71, no. 2, pp. 450–463, 2022.

[96] H. Zheng, F. Xu, L. Chen, Z. Zhou, and F. Liu, “Cynthia: Cost-
efficient cloud resource provisioning for predictable distributed
deep neural network training,” in Proceedings of the 48th
International Conference on Parallel Processing, ser. ICPP ’19. New
York, NY, USA: Association for Computing Machinery, 2019.
[Online]. Available: https://doi.org/10.1145/3337821.3337873

[97] Y. Chen, Y. Peng, Y. Bao, C. Wu, Y. Zhu, and C. Guo, “Elastic
parameter server load distribution in deep learning clusters,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020,
pp. 507–521.

[98] A. Elgabli, J. Park, A. S. Bedi, M. Bennis, and V. Aggarwal,
“Gadmm: Fast and communication efficient framework for dis-
tributed machine learning.” J. Mach. Learn. Res., vol. 21, no. 76,
pp. 1–39, 2020.

[99] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “Tictac: Accel-
erating distributed deep learning with communication schedul-
ing,” Proceedings of Machine Learning and Systems, vol. 1, pp. 418–
430, 2019.

[100] A. Jangda, J. Huang, G. Liu, A. H. N. Sabet, S. Maleki, Y. Miao,
M. Musuvathi, T. Mytkowicz, and O. Saarikivi, “Breaking the
computation and communication abstraction barrier in dis-
tributed machine learning workloads,” in Proceedings of the 27th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2022, pp. 402–416.

[101] X. Zhao, A. An, J. Liu, and B. X. Chen, “Dynamic stale syn-
chronous parallel distributed training for deep learning,” in
2019 IEEE 39th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2019, pp. 1507–1517.

[102] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More effective distributed ml
via a stale synchronous parallel parameter server,” Advances in
neural information processing systems, vol. 26, 2013.

[103] T. Ben-Nun and T. Hoefler, “Demystifying parallel and dis-
tributed deep learning: An in-depth concurrency analysis,” ACM
Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–43, 2019.

https://en.wikipedia.org/wiki/Serial_Attached_SCSI
https://en.wikipedia.org/wiki/Serial_Attached_SCSI
https://ai-benchmark.com/ranking.html
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modularpack-v4-0-112692
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modularpack-v4-0-112692
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modularpack-v4-0-112692
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-1-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-2-mobile-platform
https://doi.org/10.1145/3337821.3337873

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, JULY 2024 17

[104] Y. Zhou, Y. Yu, W. Dai, Y. Liang, and E. Xing, “On convergence of
model parallel proximal gradient algorithm for stale synchronous
parallel system,” in Artificial Intelligence and Statistics. PMLR,
2016, pp. 713–722.

[105] J. Yuan, M. Xu, X. Ma, A. Zhou, X. Liu, and S. Wang, “Hierarchical
federated learning through lan-wan orchestration,” arXiv preprint
arXiv:2010.11612, 2020.

[106] B. Na, J. Jang, S. Park, S. Kim, J. Kim, M. S. Jeong, K. C. Kim,
S. Heo, Y. Kim, and S. Yoon, “Scalable smartphone cluster for
deep learning,” arXiv preprint arXiv:2110.12172, 2021.

[107] J. Switzer, G. Marcano, R. Kastner, and P. Pannuto, “Junkyard
computing: Repurposing discarded smartphones to minimize
carbon,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2023, pp. 400–412.

Mengwei Xu is an associate professor in the
computer science department at Beijing Univer-
sity of Posts and Telecommunications. His re-
search interests cover the broad areas of mo-
bile computing, edge computing, artificial intelli-
gence, and system software.

Daliang Xu is now a Ph.D. student in the School
of Computer Science, Peking University, Bei-
jing, China. His research interests lie in mobile
computing and software engineering. Web page:
https://daliangxu.github.io/

Chiheng Lou is currently a Ph.D. student in the
School of Computer Science, Peking University,
Beijing, China. His research interests include
large language models and serverless comput-
ing.

Li Zhang is a Ph.D. student in the School of
Computer Science, Beijing University of Posts
and Telecommunication, Beijing, China. His re-
search interests lie in system software of edge
computing and mobile computing.

Gang Huang is a full professor in the School
of Computer Science, Peking University. His re-
search interests are in the area of middleware of
cloud computing and mobile computing. He is a
member of IEEE.

Xin Jin (Senior Member, IEEE) received the
PhD degree from Princeton University in 2016.
He is currently an Associate Professor (with
Tenure) in School of Computer Science, Peking
University. His research interests include com-
puter systems, networking, and cloud comput-
ing. He received USENIX FAST Best Paper
Award (2019) and USENIX NSDI Best Paper
Award (2018).

Xuanzhe Liu is a Full Professor in the School
of Computer Science at Peking University, Bei-
jing, China. His research interests mainly fall
in service-based software engineering and sys-
tems. Most of his recent efforts have been
published at prestigious conferences including
WWW, ICSE, FSE, SOSP, SIGCOMM, NSDI,
MobiCom, MobiSys, and in journals including
ACM TOSEM/TOIS and IEEE TSE/TMC/TSC.
He is a distinguished member of the ACM and
the CCF, and a senior member of the IEEE. Web

page: http://www.liuxuanzhe.com/.

https://daliangxu.github.io/
http://www.liuxuanzhe.com/

	Introduction
	Background and Motivation
	DNN Training on SoC-Clusters
	Challenges and Observations

	SoCFlow+ Design
	Group-wise Parallelism with Delayed Aggregation
	Data-parallel Mixed-precision Training
	Passive Training-cooling Co-design

	Evaluation
	Implementation and Setups
	End-to-end Performance
	Scalability
	Comparison with Traditional Datacenter GPU
	Breakdown analysis of training time
	Coexistence performance
	Ablation Study

	Discussion
	Related Work
	Conclusion
	References
	Biographies
	Mengwei Xu
	Daliang Xu
	Chiheng Lou
	Li Zhang
	Gang Huang
	Xin Jin
	Xuanzhe Liu

