The Seventh ACM/IEEE Symposium on Edge Computing Seattle, WA, December 5-8, 2022

Position Paper: Renovating Edge Servers with ARM SoCs

<u>Mengwei Xu</u>, Li Zhang, Shangguang Wang Beijing University of Posts and Telecommunications

Cherry-picked, often rural areas

Near-population, urban areas

Large, scalable

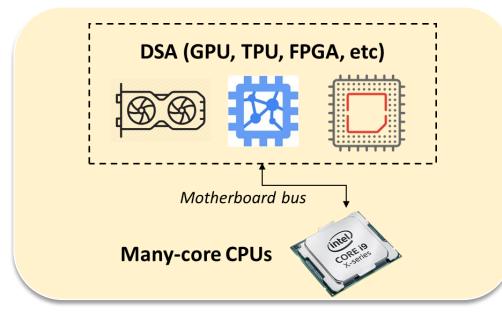
Space

Limited, unscalable

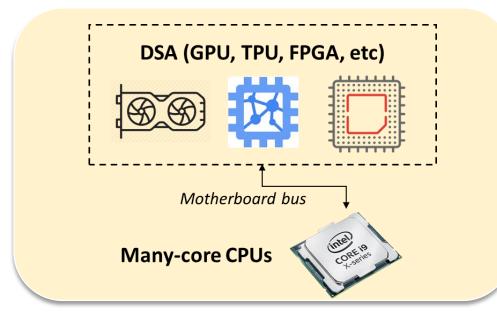
Large, scalable	Space	Limited, unscalable
Abundant, cheap	Power Supply	Constrained, expensive

Large, scalable	Space	Limited, unscalable
Abundant, cheap	Power Supply	Constrained, expensive
Powerful, mature	Cooling Facility	Wimpy or even doesn't exist

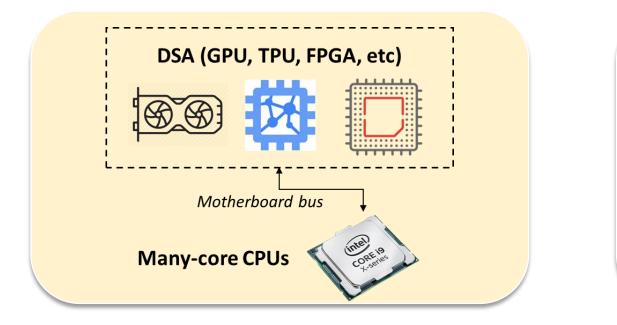
Pei, Qiangyu, et al. "CoolEdge: hotspot-relievable warm water cooling for energy-efficient edge datacenters." ASPLOS 2022.



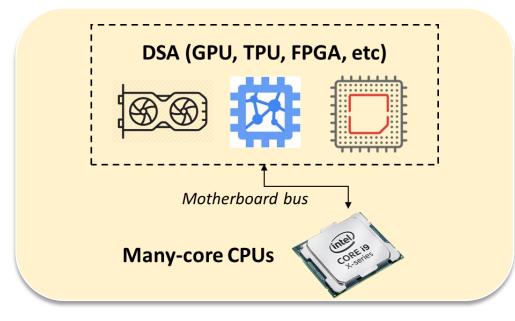
Xu, Mengwei, et al. "From cloud to	Large, scalable	Space	Limited, unscalable
edge: a first look at public edge platforms." <i>IMC</i> 2021.	Abundant, cheap	Power Supply	Constrained, expensive
	Powerful, mature	Cooling Facility	Wimpy or even doesn't exist
,	Various types, stable	Workloads	Domain-specific, highly variational

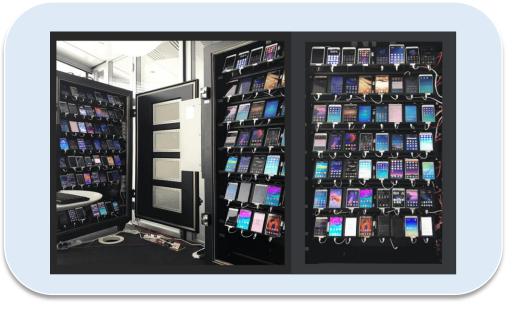


Large, scalable	Space	Limited, unscalable
Abundant, cheap	Power Supply	Constrained, expensive
Powerful, mature	Cooling Facility	Wimpy or even doesn't exist
Various types, stable	Workloads	Domain-specific, highly variational

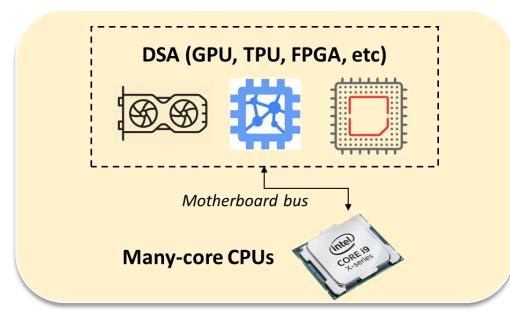


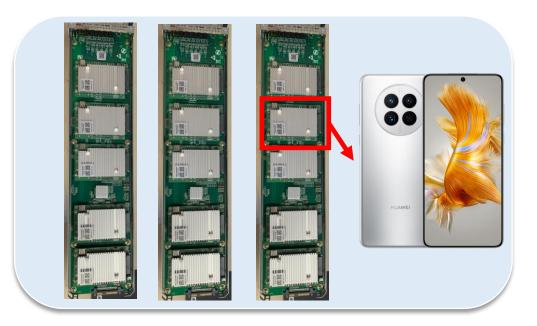
Large, scalable	Space	Limited, unscalable
Abundant, cheap	Power Supply	Constrained, expensive
Powerful, mature	Cooling Facility	Wimpy or even doesn't exist
Various types, stable	Workloads	Domain-specific, highly variational



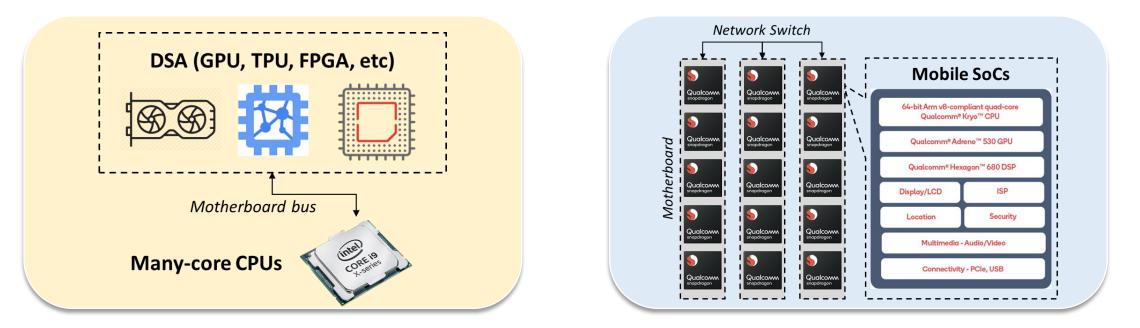


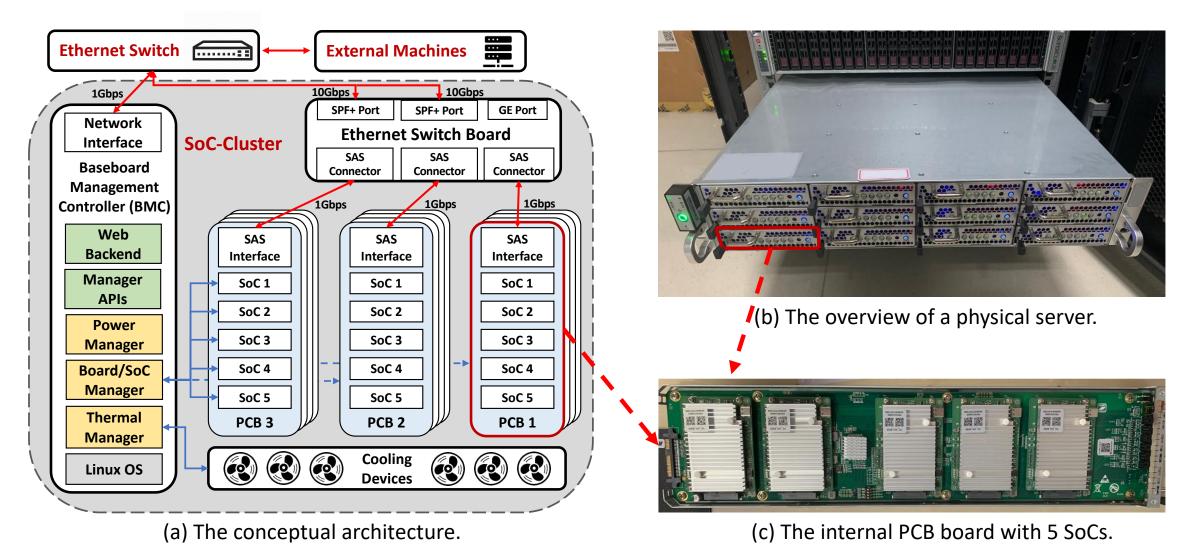
A smartphone!



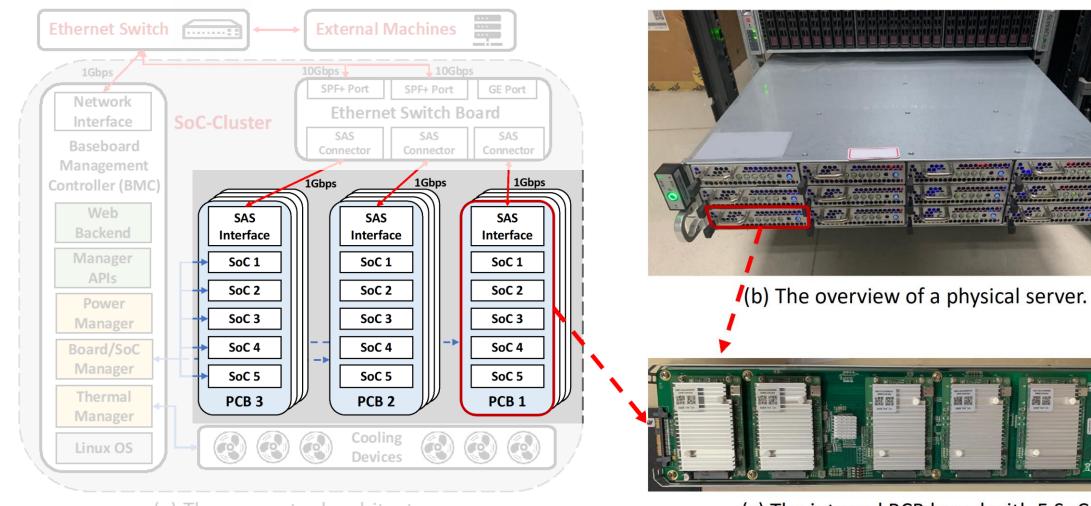


Many smartphones!




Many SoCs!

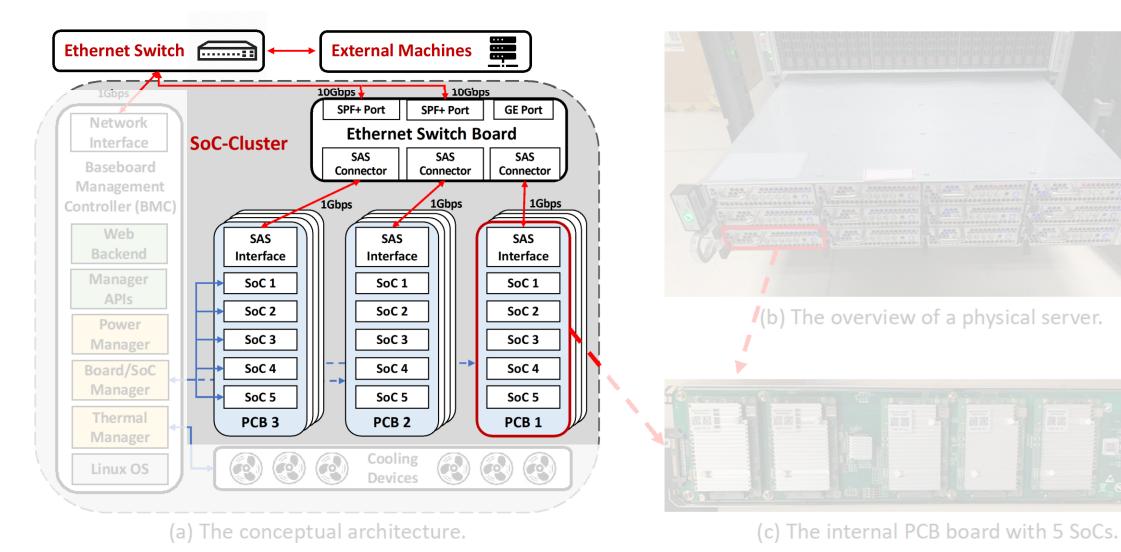
Monolithic vs. Decentralized

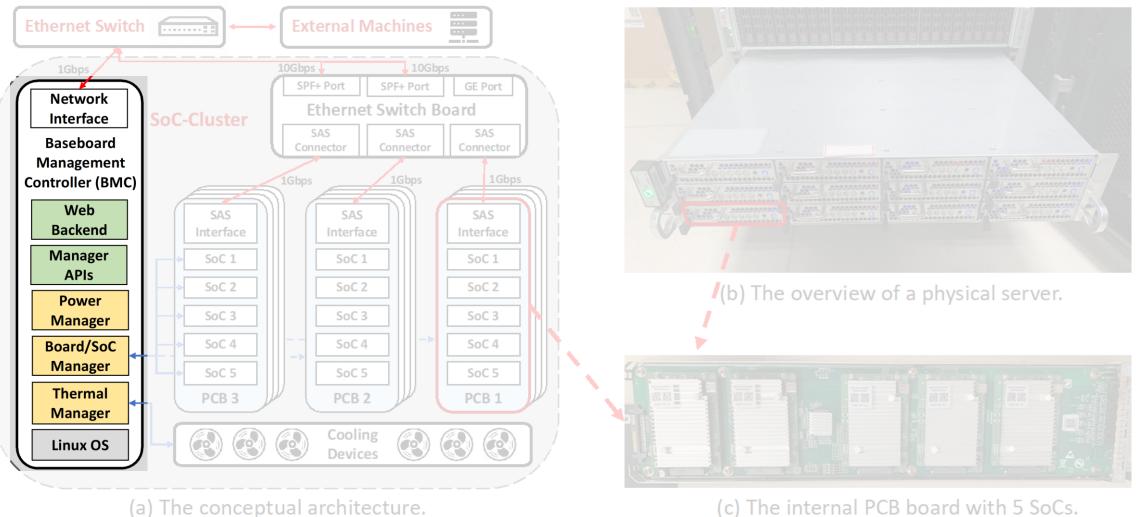


......

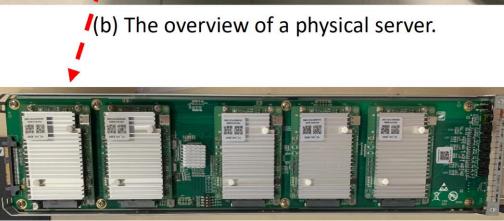
000

.....


Our proposal of SoC-Cluster

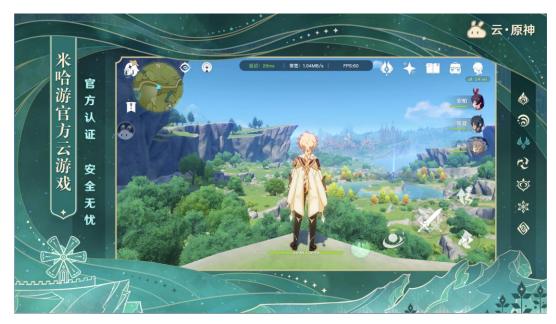

(a) The conceptual architecture.

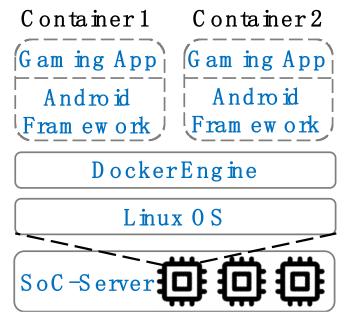
(c) The internal PCB board with 5 SoCs.


(a) The conceptual architecture.

Server in 2U rack

	SoC-Cluster (60x Snapdragon 865)	Conventional GPU Server (4 x NVIDIA V100)
CPU	400 cores	< 100 cores
Accelerators	50x Adreno GPUs ➤ 50 TFLOPS 50x Hexagon DSPs ➤ 750 TOPS	400 TFLOPS
Memory	600GB	< 200GB
Disk (Flash)	10TB	10TB




(c) The internal PCB board with 5 SoCs.

- Mobile cloud gaming
 - De facto app served by SoC-Clusters
 - Business success: Genshin Impact
 - Running natively on mobile SoCs with Android container

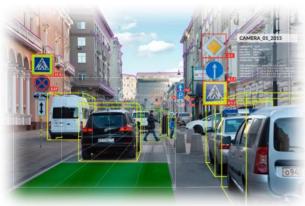
Cloud Genshin Impact

Cloud Gaming Software Arch

- Mobile cloud gaming
 - De facto app served by SoC-Clusters
 - Business success: Genshin Impact
 - Running natively on mobile SoCs with Android container
- Challenges
 - Performance isolation for multi-game parallelism
 - Resource-intensive games on out-of-date SoCs

- Live video transcoding
 - Dominant use case of public edge platforms (e.g., video conference, live streaming)
 - SoC-Cluster is good at this with its <u>Low-power CPUs</u> and <u>hardware</u> <u>codecs</u>

- Live video transcoding
 - Dominant use case of public edge platforms (e.g., video conference, live streaming)
 - SoC-Cluster is good at this with its <u>Low-power CPUs</u> and <u>hardware</u> <u>codecs</u>
- Challenges
 - FFmpeg on SoC CPUs works well, but doesn't support encoding on hardware codec


		•						
	Decoder		Encoder		Other support		ipport	
	Internal	Standalone	Hardware output	Standalone	Hardware input	Filtering	Hardware context	Usable from ffmpeg CLI
AMF	Ν	Ν	Ν	Y FFm	npeg tor	Anc	roid only	vsupports
NVENC/NVDEC/CUVID	Ν	Y	Y	Y	Y	Y	Y	Y
Direct3D 11	Y	-	Y	- dec	oding b	ut no	ot encodi	ng
Direct3D 9 / DXVA2	Y	-	Y	-	-	N	Y	Y
libmfx	-	Y	Y	Y	Υ	Υ	Y	Υ
MediaCodec	-	Y	Y	Ν	Ν	-	Ν	Ν
Media Foundation	-	N	Ν	N	Ν	Ν	Ν	Ν
MMAL	-	Y	Y	Ν	Ν	-	Ν	Ν
OpenCL	-	-	-	-	-	Υ	Y	Y

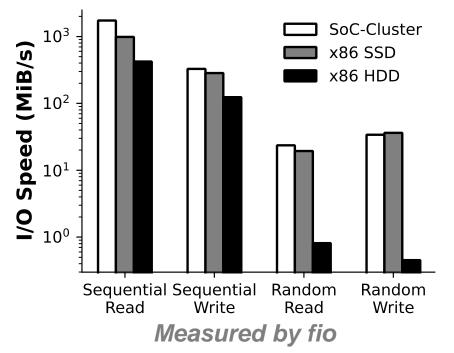
- Live video transcoding
 - Dominant use case of public edge platforms (e.g., video conference, live streaming)
 - SoC-Cluster is good at this with its <u>Low-power CPUs</u> and <u>hardware</u> <u>codecs</u>
- Challenges
 - FFmpeg on SoC CPUs works well, but doesn't support encoding on hardware codec
 - HW-accel transcoding demand: LinkedIn LiTr for single video transcoding
 - Lack of unified task scheduling framework

- Deep learning serving
 - Use cases at the edge: AR/VR, autonomous driving, intelligent cameras
 - A good fit for SoC-Cluster: (1) energy-intensive (2) heterogeneous processors like GPU, DSP, NPU for acceleration
 - Mobile DL is blossoming!
 - Impressive energy-efficiency and comparable throughput (shown in later exp)

Autonomous driving

Speech Translation https://xumengwei.github.io/

Intelligent Cameras



- Deep learning serving
 - Use cases at the edge: AR/VR, autonomous driving, intelligent cameras
 - A good fit for SoC-Cluster: (1) energy-intensive (2) heterogeneous processors like GPU, DSP, NPU for acceleration
 - Mobile DL is blossoming!
 - Impressive energy-efficiency and comparable throughput (shown in later exp)
- Challenges
 - High inference latency on large models: collaborative inference across SoCs for large DNN models (e.g., YOLOv5x, ResNet-152)

Database systems

- Basic building block of Internet services: Amazon Dynamo, Meta memcached, etc.
- I/O intensive apps: massive parallelism, independent concurrent operations
- Fast flash storage on each SoC!

- Each SoC: 256GB SK-Hynix flash storage
 - Sequential R/W: 1,733 and 328 MiB/s
 - Random R/W: 24 and 34 MiB/s
- Performance: comparable to an enterprise Samsung SSD, faster than a Seagate HDD on traditional edge servers.
- In total, 15.36 TB storage, 1GiB/s rand I/O.

- Database systems
 - Basic building block of Internet services: Amazon Dynamo, Meta memcached, etc.
 - I/O intensive apps: massive parallelism, independent concurrent operations
 - Fast flash storage on each SoC!
- Challenges
 - Distribute data across SoCs to ensure I/O operations can be concurrently handled without congestion

• Database systems

- Basic building block of Internet services: Amazon Dynamo, Meta memcached, etc.
- I/O intensive apps: massive parallelism, independent concurrent operations
- Fast flash storage on each SoC!
- Challenges
 - Distribute data across SoCs to ensure I/O operations can be concurrently handled without congestion

FAWN: A Fast Array of Wimpy Nodes

David G. Andersen¹, Jason Franklin¹, Michael Kaminsky², Amar Phanishayee¹, Lawrence Tan¹, Vijay Vasudevan¹

¹Carnegie Mellon University, ²Intel Labs

- Stream processing
 - Massive data generated by IoT devices at the edge
 - Fit for SoC-Cluster: multiple CPU cores (60 * 8) and enough memory bandwidth (60 * LPDDR5 DRAM)

- Stream processing
 - Massive data generated by IoT devices at the edge
 - Fit for SoC-Cluster: multiple CPU cores (60 * 8) and enough memory bandwidth (60 * LPDDR5 DRAM)
- Mobile-computation offloading
 - Run mobile-native software seamlessly
 - Offloading hot spots code regions
 - Critical challenge: low-latency state synchronization

Case studies

- Live video transcoding
 - Software: FFmpeg & LiTr^[1]
 - Datasets: 3 videos picked from vbench^[2]
 - Metrics: throughput, energy efficiency, video quality
- Deep learning serving
 - Software: TVM@Intel CPU; TensorRT@NVIDIA GPU; TFLite@SoC
 - Model: ResNet-50 (FP32/INT8)
 - Metrics: latency, throughput, energy efficiency
- Alternative hardware (a traditional edge server)
 - A 40-core Intel Xeon Gold 5218R processor
 - 8 * NVIDIA A40 GPU

Live video transcoding

Video	Hardware	Throughput (# of streams)	Energy (frames/J)	PSNR (db)
V1-desktop	Intel CPU (4-core container)	31	23	31.08
Bitrate:	NVIDIA A40	37	13	34.11
180 Kbps	SoC CPU	15	59	31.21
	SoC Codec	16	125	29.27
V2-game3	Intel CPU (4-core container)	8	11	39.69
Bitrate:	NVIDIA A40	18	12	40.73
5.6 Mbps	SoC CPU	4	32	40.37
	SoC Codec	12	167	34.72
V3-chicken	Intel CPU (4-core container)	2	2	38.71
Bitrate:	NVIDIA A40	6	2	42.54
49 Mbps	SoC CPU	1	5	38.80
	SoC Codec	2	26	38.28
	TA	BLE II		

LIVE VIDEO TRANSCODING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL SERVERS. VIDEOS ARE PICKED FROM A CLOUD VIDEO TRANSCODING BENCHMARK [56].

- SoC hardware codec improves throughput up to 3x (compared to SoC CPU).
- An SoC-Cluster can transcode180–1,860 streams collectively.
 - 40-core Intel CPU: 20-310
 streams
 - Equals to 30-53 A40 GPUs
 - Substantially higher throughput even on SoC CPU.

Live video transcoding

Video	Hardware	Throughput (# of streams)	Energy (frames/J)	PSNR (db)
	Intel CPU	31	23	31.08
V1-desktop	(4-core container)	51	23	51.00
Bitrate:	NVIDIA A40	37	13	34.11
180 Kbps	SoC CPU	15	59	31.21
	SoC Codec	16	125	29.27
	Intel CPU	8	11	39.69
V2-game3	(4-core container)	0	11	59.09
Bitrate:	NVIDIA A40	18	12	40.73
5.6 Mbps	SoC CPU	4	32	40.37
	SoC Codec	12	167	34.72
	Intel CPU	2	2	38.71
V3-chicken	(4-core container)	2	2	50.71
Bitrate:	NVIDIA A40	6	2	42.54
49 Mbps	SoC CPU	1	5	38.80
	SoC Codec	2	26	38.28
	TA	BLE II		

 SoC Codec can transcode 26–167 frames per Joule, up to 15.18× higher than the Intel CPU and up to 13.92× higher than the NVIDIA A40 GPU. SoC CPU/Codec **both deliver higher** energy efficiency!

LIVE VIDEO TRANSCODING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL SERVERS. VIDEOS ARE PICKED FROM A CLOUD VIDEO TRANSCODING BENCHMARK [56].

Live video transcoding

Video	Hardware	Throughput (# of streams)	Energy (frames/J)	PSNR (db)
V1-desktop	Intel CPU (4-core container)	31	23	31.08
Bitrate:	NVIDIA A40	37	13	34.11
180 Kbps	SoC CPU	15	59	31.21
	SoC Codec	16	125	29.27
V2-game3	Intel CPU (4-core container)	8	11	39.69
Bitrate:	NVIDIA A40	18	12	40.73
5.6 Mbps	SoC CPU	4	32	40.37
	SoC Codec	12	167	34.72
V3-chicken	Intel CPU (4-core container)	2	2	38.71
Bitrate:	NVIDIA A40	6	2	42.54
49 Mbps	SoC CPU	1	5	38.80
	SoC Codec	2	26	38.28
	TA	BLE II		

LIVE VIDEO TRANSCODING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL SERVERS. VIDEOS ARE PICKED FROM A CLOUD VIDEO TRANSCODING BENCHMARK [56].

- SoC CPU (SW encoder): almost the same quality as Intel CPU/NVIDIA GPU.
- SoC Codec (HW encoder): slightly poorer quality than others.
 - Mainly due to the loose quality/bitrate requirements of mobile encoders inherently.

SoC CPU is more suitable for qualitysensitive apps.

Model	Hardware	Latency (ms)	Throughput (frames/s)	Energy (frames/J)	
	Intel CPU (4 cores)	12.47	80	2.6	
ResNet-50 (FP32)	NVIDIA A40 (BS=1)	2.18	459	2.8	
	NVIDIA A40 (BS=64)	23.45	2,729	10.2	
	SoC CPU (4 big cores)	77.60	13	2.1	
	SoC GPU	32.70	31	18.2	
ResNet-50	NVIDIA A40 (BS=1)	0.45	2,202	18.6	
(INT8)	NVIDIA A40 (BS=64)	7.51	8,526	31.3	
	SoC DSP	8.80	114	71.4	
TABLE III					
DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL					

DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL EDGE SERVERS. DEFAULT BATCH SIZE (BS) IS 1.

- For FP32 model: an SoC-Cluster delivers a max throughput at 2,640 FPS.
 - Equals to 132-core Intel CPU.
 - Equals to ~1 NVIDIA A40 GPU.
- For INT8 model: an SoC-Cluster delivers a max throughput at 6,840 FPS.

Close to a NVIDIA A40 GPU.

Higher throughput than CPU servers; Slightly lower throughput than GPU servers.

Model	Hardware	Latency (ms)	Throughput (frames/s)	Energy (frames/J)	
	Intel CPU (4 cores)	12.47	80	2.6	
ResNet-50 (FP32)	NVIDIA A40 (BS=1)	2.18	459	2.8	
	NVIDIA A40 (BS=64)	23.45	2,729	10.2	
	SoC CPU (4 big cores)	77.60	13	2.1	
	SoC GPU	32.70	31	18.2	
ResNet-50	NVIDIA A40 (BS=1)	0.45	2,202	18.6	
(INT8)	NVIDIA A40 (BS=64)	7.51	8,526	31.3	
	SoC DSP	8.80	114	71.4	
TABLE III					

DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL EDGE SERVERS. DEFAULT BATCH SIZE (BS) IS 1.

- SoC GPU/DSP provide higher energy efficiency than the traditional edge server.
 - SoC GPU is 7x/1.8x energy efficient than Intel CPU/NVIDIA A40 GPU.
 - SoC DSP shows higher energy efficiency than SoC GPU.

Model	Hardware	Latency (ms)	Throughput (frames/s)	Energy (frames/J)
ResNet-50 (FP32)	Intel CPU (4 cores)	12.47	80	2.6
	NVIDIA A40 (BS=1)	2.18	459	2.8
	NVIDIA A40 (BS=64)	23.45	2,729	10.2
	SoC CPU (4 big cores)	77.60	13	2.1
	SoC GPU	32.70	31	18.2
ResNet-50 (INT8)	NVIDIA A40 (BS=1)	0.45	2,202	18.6
	NVIDIA A40 (BS=64)	7.51	8,526	31.3
	SoC DSP	8.80 TABLE III	114	71.4

DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL EDGE SERVERS. DEFAULT BATCH SIZE (BS) IS 1.

- SoC-Cluster is good at scaling its workloads with low energy consumption.
 - NVIDIA GPU: BS (64 to 1), EF (10.2 to 2.8).
 - SoC-Cluster: each SoC works with BS=1, low power.
 - Idle SoCs can also be turned off!

Model	Hardware	Latency (ms)	Throughput (frames/s)	Energy (frames/J)	
ResNet-50 (FP32)	Intel CPU (4 cores)	12.47	80	2.6	
	NVIDIA A40 (BS=1)	2.18	459	2.8	
	NVIDIA A40 (BS=64)	23.45	2,729	10.2	
	SoC CPU (4 big cores)	77.60	13	2.1	
	SoC GPU	32.70	31	18.2	
ResNet-50 (INT8)	NVIDIA A40 (BS=1)	0.45	2,202	18.6	
	NVIDIA A40 (BS=64)	7.51	8,526	31.3	
	SoC DSP	8.80	114	71.4	
TABLE III					

DL SERVING PERFORMANCE OF SOC-CLUSTER AND CONVENTIONAL EDGE SERVERS. DEFAULT BATCH SIZE (BS) IS 1. • SoC GPU/DSP deliver much lower latency than its CPU.

- 8.8ms on SoC DSP is eligible for most edge apps!
- NVIDIA GPU delivers much lower latency with a small batch size, but a higher energy cost.
- A single SoC is not likely to achieve satisfactory latency on large DNNs (e.g., YOLOv5x, BERT).

Takeaways

- Time to reconsider the edge server design
 - Why inherit the legacy from clouds
- An extreme design: SoC-Cluster
 - Massive, low-power, sub-10 nm chips.
 - Each SoC is heterogeneous itself (with GPU/NPU).
 - Commercial success in mobile cloud gaming services.
- A set of experiments that demonstrates the pros/cons of SoC-Cluster over traditional servers.

Open to any discussion or debate!

mwx@bupt.edu.cn