
Poster: Efficient and Accurate Mobile Task Automation
through Learning from Code

Shihe Wang, Li Zhang, Mengwei Xu
Beijing University of Posts and Telecommunications

{shihewang,li.zhang,mwx}@bupt.edu.cn

ABSTRACT
With the emergence and continuous prosperity of large language
models (LLMs), artificial intelligence (AI) agents have experienced
rapid advancements. Most mobile AI agents merely imitate hu-
man operations, executing actions based on the human user inter-
face (UI). The restricted input impairs the efficiency and accuracy of
mobile tasks. We propose an unexplored approach: learning from
the source code. Source code is the plain interaction for mobile
applications, which can be used to enhance the UI understanding of
mobile agents, improve action execution accuracy, and reduce the
average action completion steps. The implementation of the agent
prototype is preliminary evaluated on 5 open-source applications
and 22 tasks, reducing the average number of task completion steps
by 54%.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→ Artificial intelligence.

KEYWORDS
Task automation, large language model, code execution

ACM Reference Format:
Shihe Wang, Li Zhang, Mengwei Xu. 2024. Poster: Efficient and Accurate
Mobile Task Automation through Learning fromCode . InACM International
Conference on Mobile Systems, Applications, and Services (Mobisys ’24), June
3–7, 2024, Minato-ku, Tokyo, Japan. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3643832.3661397

1 INTRODUCTION
The emergence of large language models (LLMs) has revolutionized
mobile agents with their superior performance of understanding
mobile UI and behaving like human for daily tasks [3]. By instruct-
ing mobile agents a task description in natural language, LLM-
powered mobile agents will predict and act a sequence of actions
based on UI representations. As shown in Figure 1, to complete the
task “check my recycle bin in SMS Messages”, an LLM-powered mo-
bile agent may execute three sequential click actions to the “Recycle
Bin” screen of the application.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Mobisys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06
https://doi.org/10.1145/3643832.3661397

(1) UI automation by three 
sequential CLICK actions

(2) UI automation by direct code invocation

Figure 1: A task “check my recycle bin in SMS Messages”
could be completed by (1) three sequential click operations
on the UI or (2) direct screen navigation by invoking codes to
start an activity, where the knowledge is learned from the
source code.

However, mobile task automation by merely relying on UI op-
erations may lead to inefficiency and inaccuracy. (1) A lengthy
execution path is prone to error in individual steps. It significantly
increases the likelihood of errors from mobile agents, leading to
end-to-end task failure. (2) Mobile agents usually require to ingest
a mobile UI representation (e.g., the screenshot or view hierar-
chy (VH) of the current screen) at each step for action prediction. It
will result in high response latency and computation overhead. (3)
Current mobile applications are highly complex: they usually offer
a wide range of functionalities; some features may require multiple
levels of navigation to find, which can sometimes be challenging
even for humans. Without sufficient knowledge, LLMs are unable
to make sound decisions during the task execution process.

To solve these problems, we propose an efficient yet unexplored
approach, learning from the source code of mobile applications, to
enhancing capabilities of mobile agents in task automation. Appli-
cation source code can assist the mobile task automation process
for several reasons: (1) The source code of an application not only
contains functional implementation, but also descriptions and cor-
relations of UIs (e.g., exposed by different activities). A previous
study [4] indicates that LLMs can treat APIs as an extension of
tools for invocation, thereby enhancing task completion capabil-
ities. Learning from source code enables mobile agents to better
understand and surf inside a complex application. (2) With enough
knowledge learned from the code, mobile agents could generate
and execute code to fast complete a task by skipping cumbersome
UI operations. This can be done by invoking application APIs or
directly starting a specific activity for screen navigation.

During the prototype implementation, we initially extracted key
information from the source code. Given the complexity and diver-
sity of Android application source code, we simplified its structure
by extracting all activities, leveraging the few-shot capabilities of

https://doi.org/10.1145/3643832.3661397
https://doi.org/10.1145/3643832.3661397


Mobisys ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Shihe Wang, Li Zhang, Mengwei Xu

single-step
instruction list

adb shell tap/swipe/etc.

task
instruction

app
source code

Code Encoder
activity

①brainPlanner

Router
activity
switch ②executor

Code Generator

③interface
ABD Interface UI Automation

Figure 2: The system architecture.

LLMs and the tree structure of the source code. Subsequently, we
employed task planning that breaks down natural language instruc-
tions into single-step actions, making them more comprehensible
to LLMs. Finally, we implemented automatic adb shell invocation
for activity switching.

This approach is currently limited to open-source applications.
Developers are encouraged to share their code as applications grow
more complex and super apps increasingly require in-app agents for
task automation. Sharing source code can reduce the construction
costs of in-app agents and improve their efficiency and accuracy
during execution.

Contribution. (1) We observe the inefficiency of relying solely
on UI operations of existing mobile agents for task automation. (2)
We propose an approach that learns from source code to enhance
UI understanding and automation capabilities of mobile agents. (3)
We exemplify the approach through screen navigation, a funda-
mental component of most UI automation tasks, to demonstrate the
potential of our approach. Our evaluation on 5 real-world mobile
applications shows that our approach reduces the average number
of task completion steps by 54%, from 2.31 to 1.04. Our straightfor-
ward design of mobile task automation through learning from code
achieves task completion rate exceeding 59%.

2 DESIGN
Overall Workflow. We employed a three-layer architecture for
mobile agent design. The core architecture is shown in Figure 2.
From top to bottom, the three layers are the brain, executor, and
interface. The brain layer is responsible for receiving application
source code and task instructions. It generates an action plan by
breaking down a natural language-based task description into con-
crete, individual actions to be performed. This action plan is then
sent to the executor layer, where the router determines whether a
task can be completed directly through code execution or requires
UI operations such as tapping and swiping. For tasks executable
by code, it generates the target code; otherwise, it initiates the na-
tive UI automation process. The interface layer is responsible for
interacting with Android devices, including executing adb shell
commands.
Brain. We adopt multiple representations of UI elements within a
specific app. The source code could enhance the UI understanding
of mobile agents which powered by LLMs. The app’s resource code

Apps Task
Counts

Baseline
Steps Steps TCR

SMS Message 5 12 5 (58%↓) 80%
Calendar 4 9 4 (55%↓) 50%
Gallery 5 14 5 (64%↓) 60%
Contacts 4 9 4 (55%↓) 50%
Notes 4 7 5 (28%↓) 50%
Total 22 51 23 (54%↓) 59%

Table 1: Evaluation results for 5 real-world open-source ap-
plications. 1) Average reduction rate of task completion steps
using invoking code. 2) Average task completion rate (TCR).

is initially processed by a code encoder. The AndroidManifest file
serves as the code input, and the code encoder extracts activity
and intent information using the DOM tree of XML. Each activity
is incorporated into the system prompt and sent to the LLM as a
planner. The planner receives human natural language instruction
as a user prompt, combining the code and natural language into the
LLM prompt. The planner will generate the initial action sequence
and send it to the executor.
Executor. The executor executes the action according to the action
plan and current UI representation. The current UI representation
includes the current activity, a pixel-level screenshot, and a VH. The
executor decides the current action, and sends either an activity
route or a screen action (e.g., click or swipe) along two different
paths. The activity route path is processed by a code generator that
generates an adb shell command to jump to the target activity. The
screen action path is processed by the screen action interface.
Interface. The adb interface sends the adb shell command to
Android devices. The screen action interface can utilize existing
agents [2] to execute actions on-screen.

3 PRELIMINARY EVALUATION
Table 1 shows the results of our preliminary experiments. The
mobile agent prototype is evaluated on 5 real-world open-source
applications [1] involving 22 tasks1. We used the number of actions
for completing a specific task by humans as the baselines steps.
The planner of the brain is based on OpenAI’s gpt-3.5-turbo model.
In summary, our approach skips lengthy steps through app API
invocation, and reduces the average number of task completion
steps by up to 54% and achieves an average task completion rate
of 59%. In the future, we plan to apply PEFT to frequently updated
application code bases and fully utilize edge hardware accelerators
for efficient mobile task automation.

REFERENCES
[1] 2019. Simple Mobile Tools. https://github.com/SimpleMobileTools.
[2] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji,

Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, et al. 2023. Cogagent: A visual
language model for gui agents. arXiv preprint arXiv:2312.08914 (2023).

[3] Yuanchun Li, Hao Wen, Weijun Wang, Xiangyu Li, Yizhen Yuan, Guohong Liu,
Jiacheng Liu, Wenxing Xu, Xiang Wang, Yi Sun, et al. 2024. Personal llm agents:
Insights and survey about the capability, efficiency and security. arXiv preprint
arXiv:2401.05459 (2024).

[4] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin
Cong, Xiangru Tang, Bill Qian, et al. 2023. Toolllm: Facilitating large language
models to master 16000+ real-world apis. arXiv preprint arXiv:2307.16789 (2023).

1https://github.com/LlamaTouch/LlamaTouch/tree/main/dataset/SimpleTools

https://github.com/SimpleMobileTools

	Abstract
	1 Introduction
	2 Design
	3 Preliminary Evaluation
	References

