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Abstract
Huge energy consumption poses a significant challenge for

edge clouds. In response to this, we introduce a new type of
edge server, namely SoC Cluster, that orchestrates multiple
low-power mobile system-on-chips (SoCs) through an on-
chip network. For the first time, we have developed a concrete
SoC Cluster consisting of 60 Qualcomm Snapdragon 865
SoCs housed in a 2U rack, which has been successfully com-
mercialized and extensively deployed in edge clouds. Cloud
gaming emerges as the principal workload on these deployed
SoC Clusters, owing to the compatibility between mobile
SoCs and native mobile games.

In this study, we aim to demystify whether the SoC Cluster
can efficiently serve more generalized, typical edge work-
loads. Therefore, we developed a benchmark suite that em-
ploys state-of-the-art libraries for two critical edge workloads,
i.e., video transcoding and deep learning inference. This suite
evaluates throughput, latency, power consumption, and other
application-specific metrics like video quality. Following this,
we conducted a thorough measurement study and directly
compared the SoC Cluster with traditional edge servers, with
regards to electricity usage and monetary cost. Our results
quantitatively reveal when and for which applications mobile
SoCs exhibit higher energy efficiency than traditional servers,
as well as their ability to proportionally scale power consump-
tion with fluctuating incoming loads. These outcomes provide
insightful implications and offer valuable direction for further
refinement of the SoC Cluster to facilitate its deployment
across wider edge scenarios.

1 Introduction

Energy efficiency has become a crucial factor in the design
and operation of data centers [43]. According to reports [4],
EU data centers consumed 76.8 TWh of electricity in 2018,
which accounted for 2.7% of the total electricity usage within
the EU. This power consumption is estimated to increase to
98.52 TWh by 2030. Such high energy usage also strains the

cooling infrastructure and leads to significant costs for data
center operators [61, 69].

Edge clouds, which provide computing resources in close
proximity to users and devices, are becoming integral to daily
life. Their increasing deployment aims to reduce latency and
enhance the performance of applications. Nevertheless, en-
ergy issues are likely to intensify at the edge for several rea-
sons. First, power supplies to the edge are more limited and
expensive, since edge servers are often near populated ar-
eas, unlike cloud data centers that may be strategically near
abundant energy sources like hydro power. Additionally, edge
servers face spatial limitations and have a power density that
is an order of magnitude higher than cloud servers. This puts
additional strain on cooling mechanisms [69]. Moreover, edge
workloads fluctuate more than cloud workloads due to the
distinct features of edge applications [85]. One critical path-
way towards sustainable data centers lies in enhancing the
energy efficiency of individual servers. Past efforts mainly
focused on software optimizations [60, 65, 67, 74, 88], but
hardware redesign may offer greater benefits [75]. However,
implementing this can be challenging with established cloud
infrastructure. Fortunately, the emerging edge infrastructure
presents a timely opportunity – it is still in the final stage of de-
velopment, and we are on the eve of its inauguration [29, 78].

In this study, we advocate for a new form of edge server, re-
ferred to as SoC Cluster, which comprises tens or hundreds of
mobile SoCs, as an enhancement to existing edge infrastruc-
ture. Mobile SoCs inherently possess higher energy efficiency
than traditional datacenter servers, as they are designed for
battery operated mobile devices with intermittent usage pat-
terns [70, 71]. The SoC Cluster offers additional benefits,
such as the ability to seamlessly run mobile operating sys-
tems and applications. This benefit facilitates computation
offloading, particularly in cloud gaming scenarios [12, 14, 31]
for native mobile games. Furthermore, mobile SoCs are inher-
ently heterogenous. With an optimized software stack, they
can efficiently accommodate both general-purpose workloads
(e.g., web services), and domain-specific tasks (e.g., deep
learning [27,56] and multimedia processing [20]) by utilizing



hardware accelerators such as GPUs and NPUs.
Breaking down a monolithic server into numerous smaller

SoCs also caters to the fine-grained resource allocation re-
quired by cloud and edge applications. Figure 1 illustrates
the resource subscription of 2.7 million VMs from Microsoft
Azure [46] and 7,410 VMs from Alibaba ENS [85]. It reveals
that most VMs on Azure/Alibaba datacenters require low re-
sources, with up to 66%/36% of VMs having subscription
configurations that fit within the hardware limits of a single
mobile SoC (8 CPU cores, 12 GB memory, 256 GB storage).
The proportion is anticipated to grow in the future as the hard-
ware improvement of mobile SoCs and the ongoing trend of
software services shifting towards disaggregation [58].

Hardware prototyping. We have developed a concrete
SoC Cluster server, which integrates 60 Qualcomm Snap-
dragon 865 SoCs into a 2U rack, with detailed specifications
described in §2.2. Over the past two years, we have manu-
factured more than 10,000 such SoC Clusters, most of which
have been deployed in edge clouds, primarily to serve cloud
gaming workloads. However, according to monitored traces
(§2.3), the utilization of the deployed SoC Clusters varies
widely and is generally low. Apparently the potential of these
SoC Clusters has not been fully realized. To fill the gap, the
first and critical step is to demystify whether SoC Clusters
can efficiently serve other edge applications.

Measurement methodology. Therefore, we present a first-
of-its-kind measurement study to quantitatively assess how
our commercial-off-the-shelf SoC Cluster can efficiently sup-
port typical edge workloads. This study focuses on two mod-
ern, computation-intensive workloads: video transcoding and
deep learning (DL) serving. Video transcoding stands as the
predominant workload at the edge [85], with our experiments
pinpointing two primary scenarios: live streaming transcod-
ing and archive transcoding. DL serving forms the essential
component of numerous intelligent applications. To provide a
basis for comparison, we utilized a typical edge server with
an Intel Xeon CPU and NVIDIA GPUs. We expanded the
testing to six mobile phones with high-end Qualcomm SoCs
to broaden the findings.

Benchmark suite. We developed a benchmark suite to
test application performance on both the SoC Cluster and the
traditional edge server. The benchmark suite employs state-of-
the-art libraries for each application. For video transcoding,
it uses FFmpeg [10] to process six videos with disparate
characteristics from vbench [66]. For DL serving, it incor-
porates TFLite [27] (SoC Cluster), TVM [45] (Intel CPU),
and TensorRT [21] (NVIDIA GPU). The NN models used are
ResNet-50, ResNet-152 [52], YOLOv5x [57], and BERT [8].
We selected different software stacks for various hardware
platforms as no single software optimally performs across
heterogeneous processors. The benchmark suite reports com-
prehensive metrics, including throughput, latency, and energy
consumption under constraints like electricity and cost.

Key findings are summarized below.
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Figure 1: CDF of resource subscription of VMs in Microsoft
Azure [46] and Alibaba ENS [85]. Approximately 66% of
Azure VMs and 36% of Alibaba ENS VMs can be accom-
modated within a mobile SoC evaluated in this study (i.e., a
Qualcomm Snapdragon 865 chip with 8 CPU cores, 12 GB
memory and 256 GB storage).

(1) Energy efficiency. The SoC Cluster demonstrates up
to 6.5× higher throughput per unit of energy for serving DL
inference workloads compared to the traditional edge server
equipped with NVIDIA A40 GPUs. Its energy efficiency is
also comparable to high-end NVIDIA A100 GPUs. However,
for complex video transcoding workloads, SoC CPUs inside
the SoC Cluster underperform to NVIDIA GPUs that are opti-
mized for highly parallel tasks. Additionally, attributing to the
discrete SoC organization, the SoC Cluster can proportionally
scale its energy consumption with dynamic loads, ensuring
minimal degradation in energy efficiency.

(2) Latency. Due to a lack of proper software support for
cross-SoC collaboration, the SoC Cluster faces challenges in
handling delay-critical workloads. While the inference latency
of a single SoC for a medium-sized DNN model is low enough
to meet the requirements of most edge applications (8.8 ms on
quantized ResNet-50), the latency can be up to hundreds of
milliseconds for larger models. Therefore, there is an urgent
need for a DL library to enable collaborative inference on
multiple SoCs.

(3) Monetary cost. The SoC Cluster offers more than
2.23× greater throughput per monetary cost compared to the
traditional edge server for live streaming transcoding. On
the other hand, NVIDIA GPUs significantly outperform the
SoC Cluster in DL serving. While this outcome might deter
investment in new SoC Clusters for DL serving workloads,
migrating lightweight or latency-insensitive DL tasks to the
already deployed, underutilized SoC Clusters can still enhance
energy efficiency.

(4) SoC longitudinal study. Through a longitudinal study,
we found that mobile SoCs have demonstrated remarkable
performance enhancements over the past six years, with a
highest improvement of 8.5× on SoC DSPs. Improvements in
mobile co-processors position them as suitable candidates for
handling more complex server-side workloads in the future.
Regarding the existing manufactured SoC Clusters, optimiz-
ing the current software stack is essential to fully utilize the
capabilities of mobile co-processors.

Contributions. We made the following contributions.



• We discussed the rationales and potential benefits of or-
ganizing mobile SoCs as edge servers, and presented the
hardware prototyping and its commercial deployment by
edge service providers.

• We designed and implemented a benchmark suite for two
typical edge applications to evaluate their performance
and power consumption on both the prototyped SoC
Cluster server and a traditional edge server.

• We conducted a comprehensive measurement study
based on the benchmark suite, and highlighted both the
advantages and disadvantages of the SoC Cluster.

• We carried out a longitudinal study on various mobile
SoCs to reveal their performance enhancements over
time, and the potential to serve complex workloads with
their co-processors.

2 Design and Prototyping

2.1 Motivations
The current edge server architecture derives from the legacy
of cloud computing that has been entrenched for decades.
Typically, an edge server consists of a many-core CPU along
with a set of domain-specific accelerators (GPUs, TPUs, FP-
GAs, etc.). Major edge resource providers worldwide, includ-
ing Azure, AWS, and Alibaba, adhere to this design philoso-
phy [7, 16, 30]. However, the edge environment presents two
distinctive characteristics that set it apart from the cloud: (1)
limited electricity and space availability, resulting from the
necessity to position edge servers close to populated areas,
where the cost of electricity is high and physical spaces are
confined; (2) dynamic workloads of user-oriented applica-
tions that challenge the energy efficiency of edge sites. Al-
though various software-level optimizations have been pro-
posed [60, 67, 76], we argue that it is time to reevaluate the
architecture of edge servers. In the meanwhile, the growing
need to support mobile ecosystems in the cloud (e.g., native
mobile games [34] and virtual smartphone [36]) facilitates
the adoption of mobile SoC-based servers. In this work, we
explore the feasibility and potential benefits of organizing
multiple low-end SoCs as an edge server.

There exists some research on SoC servers. Rajovic et
al. conducted an early analysis of utilizing mobile SoCs for
high performance computing [72]. Some studies focused on
repurposing decommissioned mobile devices to reduce e-
waste [77, 80]. Others explored the use of SoCs for specific
applications, such as parallel computing [44], key-value stor-
age [41], web search [55], and video transcoding [64]. A
similar vision to ours was presented in [86], but with lim-
ited experiments and system design details. Those efforts
typically include only theoretical analysis, or they conducted
experiments on small-scale implementations involving 2–10
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Figure 2: The architecture of SoC Cluster.

smartphones or Raspberry Pis, or evaluated simplified work-
loads [59]. Instead, our work aims to materialize the “SoC-
as-a-server” concept in a more realistic and industry-relevant
context.

2.2 Implementing SoC Cluster
The design space for materializing the concept of an SoC
Cluster into a server machine is expansive. In this study, we
design and implement a concrete SoC Cluster server that
ensures maximal flexibility of each hardware component. For
simplicity, we refer to this concrete server as SoC Cluster.
Overall architecture. Figure 2 illustrates the overall architec-
ture of SoC Cluster. The major component of the server is a
pool of mobile SoCs, grouped into sets of five and integrated
into individual printed circuit boards (PCBs). These PCBs
provide dedicated power supplies and network capabilities,
and they act as network switches for interconnecting the SoCs.
Additionally, an Ethernet Switch Board (ESB) is incorporated
into SoC Cluster to connect all SoCs to the external network.
The PCBs and ESB are interconnected through a backplane.
SoC Cluster also includes a Baseboard Management Con-
troller (BMC) to monitor and manage server status, including
power, temperature, and cooling devices. In summary, the
architecture of SoC Cluster is modularized, offering great
flexibility in the design, manufacture, and upgrading.
Hardware components and functionalities. Figure 3 pro-
vides an overview of how the hardware components inside
SoC Cluster are managed and connected. Basically commu-
nication between two hardware components can be through
hardware control messages or network-layer messages. Here,
we categorize the hardware components according to their
functionalities.
• Computing. SoC Cluster’s computing units consist of

60 Qualcomm Snapdragon 865 SoCs [5]. The number of
integrated SoCs inside a SoC Cluster is mainly determined
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by the server’s physical size and cooling capability. Table 1
summarizes the detailed hardware and OS specifications of
each SoC and the entire server.
• Networking. The network functionality of SoC Cluster is

primarily provided by two core hardware components. The
first is the ESB, which exposes the computing units to the
external world through its dual SFP+ ports. It supports up
to 20 Gbps throughput. The second component consists of
12 PCBs with network switching functionality. The Ethernet
connection between the ESB and SoCs is relayed through
the corresponding PCBs. When a PCB is plugged into SoC
Cluster, it establishes a physical connection with the ESB and
builds an Ethernet connection with up to 1 Gbps throughput.
•Management. SoC Cluster uses an independent hardware

component, BMC, to monitor and control the computing units
and all related server status, such as power supplies, tempera-
ture, and hardware failures. The hardware control messages
are transmitted through a mixture of protocols and technolo-
gies, including I2C, USB and UART. The BMC also provides
an Ethernet interface that enables external machines to access
it.
• Cooling and power supplies. To ensure proper cooling,

SoC Cluster employs eight fans that circulate air through the
mobile SoCs, the ESB, and the BMC, and then expel it from
the fan module at the back of the server. The server utilizes
two power modules to provide redundant power supplies, with
a maximum support of approximately 700 watts.

2.3 Micro-experiments and Trace Analysis

Figure 4 shows the manufactured SoC Cluster evaluated in
this study, which has been on sale for over a year. As of August
2023, more than 10,000 SoC Clusters have been shipped and
deployed in the wild, primarily to edge service providers. In
collaboration with a leading worldwide edge service provider,

 

Hardware 
SoC	Cluster	 Traditional	Edge	

Server Individual	SoC	 Whole	Server	

CPU 
Qualcomm	

Kryo	585	

60x	Qualcomm	

Kryo	585	

Intel Xeon Gold	
5218R Processor 

GPU 
Qualcomm 
Adreno 650 

60x	Qualcomm	

Adreno	650	

8x	NVIDIA	A40	

PCIe	48GB 

Memory 12GB LPDDR5 720GB	LPDDR5	 768GB	DDR4	

Disk / Flash 256GB	Flash 15.36TB	Flash	 1.92TB	SSD,	30TB	HDD	

OS Android 10 -	 Ubuntu 18.04 LTS 

Network	
Integrated	1GE	

Ethernet	

2x	10GE	

SFP+	Port	

2x	1GE	RJ45	Port,	 	

2x	10GE	RJ45	Port	

Form	Factor - 2	Rack	Units	 4	Rack	Units 

 

Table 1: Two major hardware platforms used in this study.

Micro
Benchmarks

Per-core Performance Whole Server Performance
Ours Trad. G2 G3 Ours Trad. G2 G3

CPU Score 911 840 762 1,121 194,100 15,450 36,091 51,379
Integer Score 842 800 735 1,039 184,500 16,224 36,653 50,695
Floating Score 948 886 790 1,214 191,820 15,793 35,813 49,885
Text Compress 4.4 4.1 4.2 4.9 906 135 195 206
SQLite Query 257 249 208 279 59,958 9,240 12,200 16,200
PDF Render 52 41 37 66 12,552 710 2,140 3,960

Table 2: A list of micro-benchmark (from Geekbench 5 [11])
results on SoC Cluster and typical edge servers. “Ours”: SoC
Cluster; “Trad.”: the traditional edge server; “G2/3”: AWS
Graviton 2/3 cloud instances (m6g.metal/m7g.metal; both
with 64 cores, 256 GB RAM);

we discovered that the deployed SoC Clusters are primarily
used to serve a specific application: cloud gaming. Native
mobile games, such as Genshin Impact [13], usually release
installation packages tailored for mobile platforms (e.g., for
the arm64-v8a architecture). While there exists mobile-in-
cloud solutions designed for traditional servers with many-
core CPUs and monolithic GPUs [25, 33], these games can
hardly run as smoothly as they do on mobile SoCs due to in-
compatibility with the CPU architecture and graphics stacks.
Recognized as the optimal hardware setup for native mobile
games, the shipped SoC Clusters are estimated to serve mil-
lions of game sessions on a daily basis.
Micro-benchmarks on CPU. To initiate an understanding of
SoC Cluster’s performance, we employed a cross-platform
benchmark, Geekbench 5 [11], to run a series of CPU-only
micro-benchmarks on four different servers, including SoC
Cluster and the traditional edge server as shown in Table 1,
and AWS Graviton 2/3 servers with ARM CPUs designed
for cloud environments. The results in Table 2 provide the
following observations. First, the per-core performance of
SoC Cluster aligns closely with that of the Intel Xeon CPU,
outperforming the AWS Graviton 2 processor. Second, from
a whole server’s perspective, the large number of integrated
SoCs grants SoC Cluster superior performance compared to
other CPU servers. For example, it exhibits 3.8× higher CPU
core score and 3.2× faster PDF rendering speed relative to the



latest AWS Graviton 3 cloud instance. These results demon-
strate the significant potential of SoC Cluster’s applicability
for general edge workloads.
Network performance. We used ping and iPerf3 to assess
network round-trip time (RTT) and TCP/UDP bandwidth be-
tween two individual SoCs. The results show that the network
is stable, with an RTT of approximately 0.44 ms and TCP
and UDP bandwidths of nearly 903 Mbps and 895 Mbps,
respectively. However, these results do not truly reflect the
performance of the networking system, as they were not mea-
sured on real edge applications and did not involve multiple
SoCs simultaneously. In subsequent sections, we further inves-
tigate the network performance (live streaming transcoding
in §4.4 and cross-SoC DL serving in §5.3).

25x Outbound Traffic Gap

Figure 5: The network throughput of an in-the-wild SoC Clus-
ter that serves cloud gaming workloads over 38 hours. The
server is randomly picked from an edge site of one edge ser-
vice provider. Full network capacity: 20 Gbps.

Trace analysis. Although SoC Cluster exhibits superior per-
formance at the whole server level, our analysis of runtime
traces collected from deployed SoC Clusters reveals that
these servers experience workloads with relatively low uti-
lization and high dynamics. In general, the resource usage
of all deployed SoC Clusters remains below 20%. Figure 5
displays the temporal network traffic of a specific SoC Cluster
randomly selected from real-world edge sites. As observed,
the disparity between its highest and lowest outbound traf-
fic reaches up to 25×. This observation aligns with a recent
empirical study on large-scale edge clouds [85], which discov-
ered that edge applications are mainly user-centric, therefore
highly dependent on user activities. Motivated by this insight,
this study seeks to explore how efficiently SoC Cluster can
serve other typical edge workloads beyond cloud gaming.

3 Methodology and Benchmark

In this work, we perform an application-driven measurement
study to demystify the performance of SoC Cluster and tradi-
tional edge servers. This section elaborates on the methodol-
ogy used to set up the experiments, with best possible effort
to ensure a fair comparison.
Applications. We select two modern, computation-intensive
applications: (1) Video transcoding [83], which involves con-
verting the format (FPS, resolution, etc.) of a given video

stream, is widely adopted in online conferences and live
streaming. It is reported to be a dominant workload at the
edge [62, 85]. We identify two specific scenarios for this
workload: live streaming transcoding and archive transcoding,
with their characteristics illustrated in §4. (2) DL serving is a
key component in intelligent applications like AR, VR, and au-
tonomous driving [22, 26, 28]. A DL serving system receives
a stream of input data and executes it using a designated DL
model. Substantial academic effort has been directed at opti-
mizing DL serving performance [47, 50, 68, 89]. In summary,
the two applications cover the interests of both industry and
academia, representing the major workloads at the edge. They
are both resource-intensive, indicating that if SoC Cluster per-
forms well on them, it has the potential to efficiently serve
other applications as well.
Metrics are divided into two categories: application per-
formance metrics and comparison metrics. The former are
mainly about throughput (the number of processed samples
or videos per second), latency (model inference time), and
power consumption. To ensure a relatively fair comparison be-
tween SoC Cluster and the traditional edge server, we further
judiciously select two conditional constraints:
• Energy. As previously mentioned, energy consumption is

a critical constraint for edge sites. Therefore, we use through-
put per energy unit (e.g., Joule) to assess application energy
efficiency. Besides energy efficiency under a specific (often
full) load, we also consider energy proportionality under vari-
ous load levels, acknowledging that edge servers experience
high load variations. An ideal edge server should scale its
power consumption proportionally with the load to minimize
wasted energy [43].
• Monetary cost. We conduct a total cost of ownership

(TCO) analysis to provide insight into the relationship be-
tween application performance and monthly TCO. This anal-
ysis is designed to assist edge operators in making well-
informed purchasing and scheduling decisions.
Hardware. The SoC Cluster used in measurements was in-
troduced in §2.2. For comparison, we use a traditional server
equipped with an Intel Xeon Gold CPU (4.0 GHz and 40
physical cores), 8 NVIDIA A40 GPUs, and 768 GB DRAM,
running Ubuntu 18.04 LTS; its specifications are summarized
in Table 1. We confirmed that this type of server is widely used
at the edge sites where SoC Clusters are deployed. In our DL
serving experiments, we opt for a higher-end NVIDIA A100
GPU from the Google Cloud Platform for a more compre-
hensive comparison. The decision was made since NVIDIA
A40 is not the highest-end server-level GPU released in 2020,
the same year as the Qualcomm Snapdragon 865 SoC. We
exclude the NVIDIA A100 GPU in video transcoding experi-
ments due to its lack of support for NVENC video encoding
as of May 2024 [40].
Benchmark suite. One challenge of this study is selecting
the appropriate software stack. Given the inherently het-
erogeneous hardware architectures, we found that there is



rarely software compatible with each processor type (i.e., SoC
CPU/GPU/DSP, Intel CPU, and NVIDIA GPU). Even if such
software exists, its performance could be far from state-of-the-
art standards. To obtain meaningful results, we consulted with
our industry partners and conducted testing with commonly
used software. We then selected best-performing option for
each application and hardware configuration.
• Video transcoding. We use FFmpeg (v4.4) [10] with

libx264 [32] and NVDEC/NVENC [23] support. We cross-
compiled FFmpeg to SoC Cluster with ARMv8 NEON accel-
eration. We employ a popular open-source Android library,
LiTr [18], for hardware-accelerated transcoding on SoC Clus-
ter, due to FFmpeg’s limited support for Qualcomm SoCs.
The benchmark suite is built atop vbench [66], a benchmark
tool widely used for cloud video transcoding.
• DL serving. We employ TFLite [27] for SoC Clus-

ter, TVM [45] for the Intel CPU, and TensorRT [21] for
the NVIDIA GPU. We select one medium-sized DNN
(ResNet-50 [52]) and three large DNNs (ResNet-152 [52],
YOLOv5x [57], and BERT base [8]), all of which are repre-
sentative DL serving workloads.
Setups. For experiments on the Intel CPU, we partition the 80
cores (80 hardware threads) into 10 separate 8-core Docker
containers. We select 8 cores for two reasons. First, previ-
ous edge workloads [85] have shown that 8 is the median
number of vCPU cores for edge IaaS VMs, which is also
adequate for most edge services. Second, the SoC’s CPU
also contains 8 cores, making the comparison more direct.
We leverage the turbostat command to read CPU/RAM
power and the nvidia-smi command to access GPU power
on the traditional edge server. On SoC Cluster, we utilize
BMC’s API (implemented atop the I2C protocol) to mea-
sure power consumption of the whole server. Our report on
workload power consumption excludes idle power. By default,
our experiments are conducted with hardware fully loaded
by batching DL serving or starting multiple transcoding pro-
cesses. We vary the load levels only when testing the energy
proportionality. Furthermore, to reduce power fluctuations
during experiments: (1) in live streaming transcoding, we start
the maximum number of streams supported by each hardware,
ensuring that no stream’s performance (FPS) fell below that
of the origin video stream; (2) in archive transcoding, we
repeat the same transcoding process on a video ten times; (3)
in DL serving, we set the DL inference iteration to 1,000 for
each test.

4 Video Transcoding Results

In this section, we compare video transcoding performance
in two scenarios with distinct characteristics: live streaming
transcoding and archive transcoding. The former usually takes
video streams with a constant frame rate, widely used in live
streaming and online conferences. The latter processes video
clips from file storage, typically serving as a preliminary stage

V10.0

0.5

1.0

1.5

Tp
E 

(s
tr

ea
m

s/
W

)

SoC-CPU Intel-CPU GPU-A40

V20.0

0.5

1.0

1.5

2.0

V30.0

0.2

0.4

V40.0

0.5

1.0

V50.0

0.1

0.2

0.3

0.4

V60.00

0.05

0.10

0.15

(a) Live streaming transcoding

V10

1

2

3

4

Tp
E 

(f
ra

m
es

/J)

SoC-CPU Intel-CPU GPU-A40

V20

5

10

15

V30

2

4

V40

2

4

6

V50.0

0.5

1.0

1.5

2.0

V60.0

0.2

0.4

0.6

0.8

(b) Archive transcoding

Figure 6: Transcoding energy efficiency.

before distribution to content providers [24, 66]. Following
the prior video benchmark [66], we maintain a constant target
bitrate for live streaming transcoding and consistent video
quality for archive transcoding across hardware. The metadata
for the videos is shown in Table 3.

4.1 Energy Efficiency
For live streaming transcoding, energy efficiency is mea-
sured as the number of video streams supported per watt
(streams/W). For archive video transcoding, energy efficiency
is measured as how many frames can be processed per Joule
(frames/J). We unify the above metrics as throughput per en-
ergy unit (TpE). Figure 6a and 6b present the results for live
streaming transcoding and archive transcoding, respectively.
Our key observation is that SoC Cluster shows significant
energy savings across all live streaming and partial archive
transcoding tasks over the Intel CPU and the NVIDIA GPU.

In live streaming transcoding, SoC Cluster’s SoC CPUs
are 2.58×–3.21× more energy-efficient than the Intel CPU,
and 1.83×–4.53× more energy-efficient than the NVIDIA
A40 GPU across different videos. In archive transcoding,
SoC CPUs consistently outperform the Intel CPU in energy
efficiency, although their advantage over the NVIDIA GPU
varies by video. Specifically, the NVIDIA GPU performs
worse on videos V2 and V4. We find the common feature
of V2 and V4 is that they have low entropy due to minimal
motion or rare scene transitions. In such cases, we observe
that the NVIDIA GPU stays in a high-power mode with high
clock frequencies, while SoC CPUs accomplish these tasks
using minimal CPU resources. The similar observation can
be proven in live streaming transcoding tasks – SoC Cluster
demonstrates superior energy efficiency on videos with lower
complexity.

We further explore how energy efficiency scales with dy-
namic workloads at the edge. To conduct this analysis, we
manually adjust the number of simultaneous transcoded video
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Resolution FPS Source
Entropy

Source
Bitrate

Target
Bitrate

Max. Stream Num
(per SoC)

Max. Network Usage
(per PCB, 1 Gbps)

Max. Network Usage
(whole server, 20 Gbps)

V1: holi 854x480 30 7.0 2.8 Mbps 819.8 Kbps 13 (CPU) / 16 (HW) 534 Mbps (53.4%) 6,407 Mbps (32.0%)
V2: desktop 1280x720 30 0.2 181 Kbps 90.5 Kbps 15 (CPU) / 16 (HW) 43 Mbps (4.3%) 505 Mbps (2.5%)
V3: game3 1280x720 59 6.1 5.6 Mbps 2.7 Mbps 4 (CPU) / 12 (HW) 673 Mbps (67.3%) 8,072 Mbps (40.3%)
V4: presentation 1920x1080 25 0.2 430 Kbps 215 Kbps 9 (CPU) / 16 (HW) 81 Mbps (8.1%) 968 Mbps (4.8%)
V5: hall 1920x1080 29 7.7 16 Mbps 4.1 Mbps 3 (CPU) / 7 (HW) 1,008 Mbps (100.8%) 12,010 Mbps (60.5%)
V6: chicken 3840x2160 30 5.9 49 Mbps 16.6 Mbps 1 (CPU) / 2 (HW) 985 Mbps (98.5%) 11,821 Mbps (59.1%)

Table 3: The metadata of videos in the transcoding experiments and the network bound analysis of live streaming transcoding on
SoC Cluster. The videos are picked from vbench [66] to ensure diverse coverage of resolution, FPS, and entropy. Entropy is
calculated by bits per pixel per second and thus relating to the scene complexity. The network usages include both inbound and
outbound traffic. CPU and HW represent transcoding on SoC CPU and SoC hardware codec.
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Figure 7: Energy efficiency of live streaming transcoding
with different numbers of live video streams being processed
simultaneously.

streams from 1 to 20 on all hardware. We use two 1080p
videos with diverse scene complexity and present the relation-
ship between throughput per watt and the number of processed
video streams. Figure 7 shows a consistent trend for both
videos: both SoC CPUs and the Intel CPU display nearly con-
stant energy efficiency as the number of video streams rises,
implying a linear increase in power consumption with increas-
ing workloads. As for the NVIDIA GPU, it can only process
0.018 live video streams per watt when transcoding a single
video (V4), falling 14.9× behind the Intel CPU and 40.8×
behind SoC CPUs. As the number of video streams increases,
energy efficiency of the NVIDIA GPU gradually increases but
is still lower than that of SoC CPUs. The fine-grained control
over SoC CPU cores or SoCs offers better energy scalability
for serving dynamic video transcoding workloads on SoC
Cluster.

4.2 Hardware-accelerated Video Transcoding
on SoCs

Mobile SoCs are equipped with hardware codecs to handle
most of the video encoding/decoding tasks on smartphones.
Our tests focus on live streaming transcoding because An-
droid MediaCodec’s APIs [20] lack the controls for video
quality, which is essential for a fair comparison in archive
transcoding. We used LiTr [18] for hardware-accelerated
video transcoding instead, given that FFmpeg only supports
hardware decoding but not encoding on the Android plat-
form [15]. Below, we compare the performance and transcod-
ing behavior of the hardware codec against SoC CPU, focus-
ing on key metrics such as server-side transcoding throughput,
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Figure 8: Live streaming transcoding performance of SoC
CPU and hardware codec in SoC Cluster.

energy efficiency, output bitrate, and video quality.
Our key observation is that the hardware codec of the mo-

bile SoC exhibits a significant improvement over its CPU. As
shown in Figure 8a, employing the hardware codec increases
the maximum number of supported live video streams by
1.07×–3×. The increase in energy efficiency is even more
impressive, as illustrated in Figure 8b. For videos with low-
complexity scenes (V1, V2, and V4), the hardware transcoders
in SoC Cluster can support a geometric mean of 2.5× more
streams per watt compared to SoC CPUs. When transcoding
high-entropy and high-resolution videos (i.e., V3, V5, and
V6), SoC CPUs consume more power for video encoding,
while offloading transcoding workloads to hardware codecs
results in a significant boost in energy efficiency, with im-
provements ranging from 4.7× to 5.5×.

To further clarify the ability of hardware codecs in SoC
Cluster to handle live streaming transcoding workloads, we
evaluate the output video bitrate, which is one of the most crit-
ical metrics affecting user experience. As depicted in Figure 9,
we use red dash lines to indicate the target bitrate for each
transcoding task. The primary finding reveals that, in most
cases, the hardware codec can meet the bitrate constraint, but
it struggles to meet a relatively low bitrate cap. For example,
setting a target bitrate of 90.5 Kbps for V2 will make the
encoder create a higher bitrate output (even higher than the
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Figure 10: Live streaming transcoding quality of different
encoders with the same bitrate constraint.

origin video stream). Such unexpected behavior runs counter
to the typical objective of archive transcoding services to com-
press a video stream. The same behaviors were confirmed by
our supplementary experiments on other videos and ultra-low
bitrate settings. This may suggest a potential design trade-
off made by the mobile SoC vendor with considerations for
energy efficiency and chip size.

4.3 Transcoding Quality

Transcoding quality refers to the consumer perception of the
output video. The live streaming transcoding experiments
were conducted with a fixed target bitrate. However, due to
the nuances at both the software (libx264 vs. MediaCodec
vs. NVENC) and hardware (CPU vs. GPU vs. ASIC) lay-
ers, video quality could vary noticeably even under identical
bitrate constraints. To evaluate this, we saved the output of
live streaming transcoding to files from previous experiments
and used Peak Signal-to-Noise (PSNR) [54] as the metric to
represent video quality, where higher values indicate better
quality.

As shown in Figure 10, the software encoder running on
SoC CPUs can maintain nearly equivalent video quality to
those using the Intel CPU and the NVIDIA GPU, while videos
generated by SoC Cluster’s hardware codec have slightly
poorer quality than others. The general-purpose computing
units (i.e., the SoC CPU and the Intel CPU), paired with the
software encoder (i.e., libx264) using identical transcoding
configurations, always generate videos with the same qual-
ity. In contrast, videos transcoded by MediaCodec exhibit
about 1.35%–14.77% lower PSNR values compared to those
generated by libx264 using SoC CPUs. This is caused by
the less stringent quality and bitrate specifications of mo-
bile encoders [75]. To further explore what bitrate should
be set to attain comparable video quality using MediaCodec,
we manually tuned the target bitrate and then compared the

PSNR value with the original video. Despite these adjust-
ments, videos generated using MediaCodec failed to match
the video quality achieved by libx264. As such, if the quality
loss incurred by MediaCodec is not bearable, it is better to
choose SoC CPUs for video transcoding.

4.4 Network Bound Analysis
If the SoC Cluster is fully occupied with video transcoding
workloads, will the network capacity become the bottleneck?
Our mathematical analysis in Table 3 indicates that it will not.
By multiplying the theoretical maximum number of live video
streams supported by a single SoC (SoC CPU + SoC hard-
ware codec) and the total network traffic per stream, we find
that among the six videos tested, network usage will slightly
exceed the PCB’s 1 Gbps capacity only when transcoding V5
video. In practice, this is not feasible as software delegation
daemon processes of SoC hardware codecs also consume
some CPU resources. For the entire SoC Cluster, the ESB’s
20 Gbps capacity will not become a bottleneck. However,
with denser SoC integration in future SoC Cluster generations
or more complex video transcoding workloads, the network
could become a limiting factor and need enhancement.

Summary. SoC CPUs in SoC Cluster provide up to 3.2×
and 4.5× higher energy efficiency than the traditional
Intel CPU and NVIDIA GPU, respectively. The fully-
fledged software stack enables a seamless transition of
current transcoding services to SoC Clusters. Although
hardware codecs of SoCs provide even higher throughput
and energy efficiency than SoC CPUs, their differeces in
software-level encoding library implementation lead to in-
consistent qualities and bitrates in output videos. Nonethe-
less, SoC CPUs demonstrate high and robust potential for
general video transcoding services, and hardware codecs
provide even higher profits for relatively narrower video
transcoding scenarios.

5 Deep Learning Serving Results

5.1 Inference Latency
Inference latency is a crucial factor in delay-sensitive work-
loads, directly impacting the user experience. In our study,
we conducted tests on NVIDIA GPUs using varying batch
sizes to strike a balance between inference latency and energy
efficiency. We limited the batch size to 1 on other hardware,
as this setup fully utilizes hardware resources; increasing
the batch size further only resulted in higher latency while
not improving energy efficiency. The results are shown in
Figure 11a.

We have made the following observations. (1) The SoC
GPUs in SoC Cluster exhibit 1.55×–2.61× lower latency
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Figure 12: Energy efficiency of SoC Cluster and the tra-
ditional edge server under various DL input loads. SoC
Cluster delivers higher throughput per energy with light
workloads.

compared to SoC CPUs across tasks, and their performance
are comparable to the Intel CPU with eight cores used in our
experiments. (2) The latency demonstrated by the NVIDIA
GPU with batch size 1 is significantly lower than other pro-
cessors due to its high hardware-level parallelism and well-
optimized software (i.e., TensorRT). However, when larger
batch sizes are used, the latency on the NVIDIA GPU in-
creases significantly and may even approach or exceed that of
SoC Cluster, e.g., performing inference on YOLOv5x (FP32)
and BERT (FP32) using the NVIDIA A40 GPU with a batch
size of 64. (3) For medium-sized DNNs, such as ResNet-50,
SoC GPUs (for FP32 format) or DSPs (for INT8 format) are
typically capable of delivering satisfactory inference latency,
i.e., 32.7 ms and 8.8 ms, respectively. In comparison, using the
NVIDIA GPU for inference only results in marginal speed
up (e.g., approximately 8 ms for a INT8-based ResNet-50
model), but comes at the cost of higher energy consumption,
as we will discuss below. (4) For large DNNs like ResNet-
152, considering both FP32 and INT8 formats, the inference
latency of SoC Cluster ranges from 20.4 ms to 269 ms, which
is unacceptable for real-time applications [3]. To address this
issue, a potential solution could be a cooperative inference
framework among multiple SoCs.

5.2 Energy Efficiency

We use throughput per energy unit as the metric to evaluate
the energy efficiency of each hardware type, which is calcu-
lated as the number of samples processed per Joule. A server
with higher energy efficiency can process more samples with
the same amount of electricity. The results are presented in
Figure 11b. Our key observation is that SoC Cluster exhibits
significantly higher energy efficiency compared to the Intel
CPU and mid-end NVIDIA GPU, and is comparable to the
high-end NVIDIA GPU. Especially on ResNet-50 (FP32),
SoC GPUs show the ability to process about 18 frames per
second per Joule, which is 7.09× higher than the Intel CPU,
1.78× higher than the NVIDIA A40 (BS=64), and 1.15×
higher than the NVIDIA A100 (BS=64). The energy effi-
ciency advantage of SoC Cluster is even more significant in
quantized models. Taking ResNet-152 with INT8 format as
an example, the energy efficiency of SoC DSPs is 42× higher
than that of the Intel CPU and 1.5× higher than that of the
NVIDIA A100 (BS=64). This can be attributed to the fact
that SoC DSPs are designed for low-power data processing,
operating at frequencies of ≤500MHz.

The above energy efficiency values are primarily based on
the measurements taken when the servers are fully loaded. We
also measured energy efficiency under varying workloads, as
discussed in §4.1. Figure 12 illustrates this analysis of the SoC
GPU and the NVIDIA A100 GPU, chosen due to their high
energy efficiency on SoC Clusters and traditional edge servers,
respectively. For ResNet-50, SoC Cluster shows significant en-
ergy efficiency advantages when the workload is lightweight,
e.g., 5.71× more energy-efficient than the NVIDIA A100
GPU on average with only five samples per second. This is
primarily due to SoC Cluster provides fine-grained scheduling
at the level of each SoC for efficient processing of incoming
requests. When incoming data can be adequately processed
by only a subset of SoCs, the remaining SoCs can be kept in a



low-power state or even turned off. In comparison, datacenter-
level GPUs have coarser granularity to scale their energy
consumption with dynamic workloads.

5.3 SoC-collaborative DL Inference
In this section, we conducted a preliminary analysis on SoC-
collaborative DL inference, which aims to mitigate high in-
ference latency. We used the MNN [56] framework and the
tensor parallelism algorithm proposed in [87]. Specifically,
each participating SoC calculates 1/N of the entire tensor
along the width dimension. Intermediate results are transmit-
ted between SoCs via the TCP protocol.

Figure 13 shows inference latencies and their breakdown
when using 1–5 SoCs. We observe that involving more SoCs
does not proportionally reduce inference latencies. This may
stem from imperfections in the software design that incur
additional computation and high communication overhead.
For example, on the ResNet-50 model, increasing the number
of SoCs from one to five reduces the computation time from
80 ms to 34 ms (a 2.35× reduction), while the inference only
achieves a 1.38× speedup. When using five SoCs, the data
communication time contributes to 41.5% of the total infer-
ence latency, where both computation and communication
time lengthen the overall latency. We then tried to optimize
the data synchronization design between SoCs by transferring
computation-required data first, aiming to pipeline compu-
tation and communication. Results show that the network
communication time still accounts for 22.9% of the total la-
tency with five SoCs involved, indicating network bandwidth
could bottleneck the SoC collaboration process. Therefore,
software optimizations (e.g., more fine-grained tensor parti-
tioning) and hardware enhancements (e.g., increased network
bandwidth) should be jointly utilized to improve performance,
especially when a larger number of SoCs are involved.

Summary. SoC GPUs and DSPs in SoC Cluster demon-
strate superior energy efficiency compared to traditional
server-level CPUs (up to 42×) and GPUs (up to 6.5×).
The inference latency of SoC Cluster on medium-sized
DNNs, such as ResNet-50, is satisfactory for meeting the
requirements of typical edge applications. However, more
advanced software that can orchestrate multiple SoCs is
urgently demanded to collaboratively serve large DNNs
on SoC Clusters efficiently. SoC Cluster could also en-
hance its network bandwidth to reduce data communica-
tion time in cross-SoC DL inference.

6 Cost Analysis

Cost is another critical dimension to evaluate the suitability of
new hardware. In this section, we conduct a TCO analysis on
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SoC Cluster and traditional edge servers. The TCO consists
of two parts: the capital expenditure needed to purchase the
servers (CapEx, with a breakdown of each hardware compo-
nent) and the operational expenditure (OpEx). We calculate
the total CapEx using the retail purchase cost. For OpEx, we
consider only the electricity cost as in prior work [59]. In addi-
tion to the traditional edge server that consists of an Intel CPU
and 8 NVIDIA GPUs, we add a “virtual server” by excluding
all 8 NVIDIA GPUs. We use throughput per cost (TpC) as the
normalized performance metric. A server with a higher TpC
value indicates its ability to process more workloads within
the same monetary cost budget.
Capital expenditure. As shown in the top half part of Table 4,
GPUs account for a substantial portion of the total CapEx in
a traditional edge server. In a CPU-only server, the CapEx
is amortized across different hardware components. Within
SoC Cluster, 60 SoCs and 12 PCBs constitute almost 87% of
the total CapEx. In summary, SoC Cluster has a lower CapEx
than the traditional edge server with 8 NVIDIA GPUs but
costs about 2.8× more than a CPU-only edge server.
Operational expenditure. We opted not to use complex
OpEx models [77] as we observed that CapEx consistently
dominated the TCO, as we describe later. This was also re-
ported in a previous study by Google [42]. Therefore, we
have chosen to report only the electricity cost in this anal-
ysis. The monthly electricity cost is calculated by multiply-
ing the monthly power consumption (kWh) with the elec-
tricity unit cost ($/kWh). The monthly power consumption
across all workloads correlates with their average power usage.
For instance, performing live streaming transcoding when
fully utilizing all 8 NVIDIA A40 GPUs has an average
power consumption of 1,231 watts. Assuming the servers
operate at their average peak power 50% of the time over a
month, the monthly power consumption can be calculated
as 1231W ∗50%∗24h∗30/1000 = 443kWh. The electricity
unit cost was ascertained by referring to the U.S. industrial av-
erage electricity price over one year, from August 2021 to July
2022 [9]. Thus, the monthly electricity cost directly related to
computation is $0.0786/kWh∗443kWh≈ $35. Additionally,
the PUE (Power Usage Effectiveness) overhead, reflected by



TCO Component Parameter Edge Server
Cost

Edge Server
(W/O GPU) Cost Parameter SoC Cluster

Cost

Capital
Expenditure
(CapEx)

Intel CPU $2,740 (5.7%) $2,740 (21.0%) 60× SoC $24,489 (67.5%)
DRAM $3,540 (7.3%) $3,540 (27.1%) 12× PCB $7,075 (19.5%)
Disk $1,220 (2.5%) $1,220 (9.4%) Ethernet Switch Board $689 (1.9%)
8× NVIDIA A40 GPU $35,192 (73.0%) $0 (0%) BMC $1,923 (5.3%)
Others $5,544 (11.5%) $5,544 (42.5%) Others $2,104 (5.8%)
Total CapEx $48,236 $13,044 Total CapEx $36,280
Total CapEx/36 months $1,340 $363 Total CapEx/36 months $1,008

Operational
Expenditure
(OpEx)

Avg. peak power consumption 1,231 watts 633 watts Avg. peak power consumption 589 watts
Monthly kWh (50% Util.) 443 kWh 228 kWh Monthly kWh (50% Util.) 212 kWh
Electricity unit cost [9] $0.0786/kWh $0.0786/kWh Electricity unit cost [9] $0.0786/kWh
Server electricity cost $35 $18 Server electricity cost $17
PUE Overhead (PUE=2.0 [42]) $35 $18 PUE Overhead (PUE=2.0 [42]) $17
Monthly electricity cost $70 $36 Monthly electricity cost $34

Total Monthly TCO $1,410 $399 Monthly TCO $1,042

Table 4: Capital expenditure (CapEx), operational expenditure (OpEx), and resultant monthly TCO of each server. We additionally
estimated the TCO of the traditional edge server without NVIDIA GPUs. The monthly electricity cost was calculated by sampling
the average peak power consumption when performing live streaming transcoding on V5.

the ratio of total building power consumption to IT infras-
tructure power consumption, adds to the monthly electricity
cost [42]. We used a slightly higher PUE value (2.0) at the
edge, compared to 1.5 at cloud data centers [42]. The overall
monthly electricity cost is $35+$35∗ (2.0−1) = $70.
Monthly cost. The detailed monthly cost calculation is pre-
sented in Table 4. In line with prior work [59], we break down
the monthly TCO into the following components:

• Total CapEx amortized to 36 months. By assuming a 3-
year server lifetime [42,55,59], we amortized the CapEx
of each server to 36 months.

• Monthly OpEx mainly refers to the electricity cost. It is
worth noting that the monthly OpEx is significantly less
than the amortized CapEx (e.g., $70 vs. $1,340 for the
traditional edge server).

We added these two expenditure figures to get the monthly
TCO, then normalized the application throughput (measured
in previous sections) to the monthly TCO as the TpC met-
ric. Table 5 shows that SoC Cluster is a cost-efficient option
for live streaming transcoding. Specifically, compared to the
edge server with NVIDIA A40 GPUs, the SoC CPUs show
a geometric mean of TpC that is 4.28× higher than the Intel
CPU and 2.23× higher than NVIDIA GPUs. Even without
NVIDIA GPUs in the traditional edge server, SoC CPUs
achieve a geometric mean of TpC that is 1.22× higher than
the Intel CPU. Moreover, the Intel CPU in the non-GPU server
shows higher TpC than NVIDIA A40 GPUs for all videos.
For archive transcoding, SoC Cluster is less cost-efficient
than the traditional edge server due to its low throughput on
a single SoC and relatively high CapEx. For most scenar-
ios, processing archive transcoding with the NVIDIA GPUs
provides higher TpC compared to other hardware options.
Regarding DL serving, the NVIDIA GPUs exhibit a marked
increase in cost efficiency over SoC Clusters. This is mainly

Server Hardware Live Streaming Transcoding TpC (streams/$)
V1 V2 V3 V4 V5 V6

Edge (W/ GPU) Intel CPU 0.180 0.223 0.057 0.101 0.042 0.013
GPU A40 0.420 0.210 0.102 0.181 0.114 0.034

Edge (W/O GPU) Intel CPU 0.627 0.777 0.200 0.351 0.146 0.047
SoC Cluster SoC-CPU 0.748 0.863 0.230 0.519 0.173 0.058

Server Hardware Archive Transcoding TpC (frames/s/$)
V1 V2 V3 V4 V5 V6

Edge (W/ GPU) Intel CPU 0.027 0.053 0.020 0.024 0.004 0.001
GPU A40 0.162 0.140 0.203 0.086 0.091 0.035

Edge (W/O GPU) Intel CPU 0.094 0.189 0.072 0.085 0.013 0.004
SoC Cluster SoC-CPU 0.015 0.046 0.010 0.022 0.002 <0.001

Server Hardware DL Serving TpC (frames/s/$)
R-50
(FP32)

R-152
(FP32)

YOLO
(FP32)

BERT
(FP32)

R-50
(INT8)

R-152
(INT8)

Edge (W/ GPU) Intel CPU 0.579 0.176 0.010 0.044 1.201 0.355
GPU A40 14.631 4.535 0.571 7.311 45.684 19.840

Edge (W/O GPU) Intel CPU 2.026 0.617 0.036 0.152 4.199 1.242

SoC Cluster
SoC-CPU 0.750 0.131 0.026 1.840 -
SoC-GPU 3.210 0.628 0.077 -
SoC-DSP - 6.673 2.871

Table 5: Normalized application throughput to monthly TCO.
We highlight the highest throughput per cost among used
hardware for each video/model. “Edge”: the traditional edge
server.

attributed to their ability to handle batched DL requests and
deliver high throughput under full loads.

Summary. SoC Cluster’s CapEx is comparable to an 8-
GPU server and is significantly higher than that of a CPU
server. While SoC Cluster has the potential to reduce
OpEx through electricity savings, the total cost is still
dominated by the CapEx. Regarding specific workloads,
SoC Cluster outperforms traditional CPU/GPU servers in
cost efficiency for live streaming transcoding. However,
it falls behind the NVIDIA GPU for tasks that demand
significant computing capacity (archive transcoding), and
those involving highly GPU-optimized workloads (DL
serving).



Devices SoC RAM OS Release Date
Xiaomi 12 S QS 8+Gen1 12 GB Android 12 May 2022
Xiaomi 11 Pro QS 888 8 GB Android 11 Jun. 2021
Meizu 17 QS 865 8 GB Android 10 Mar. 2020
Meizu 16T QS 855 6 GB Android 9 Mar. 2019
Xiaomi 8 QS 845 6 GB Android 8.1 Feb. 2018
Xiaomi 6 QS 835 6 GB Android 7.1.1 Mar. 2017

Table 6: Device specifications of six mobile phones used in
the SoC longitudinal study. QS: Qualcomm Snapdragon.

7 SoC Longitudinal Study

The previous experiments were conducted on an SoC Cluster
consisting of a specific SoC model, i.e., the Qualcomm Snap-
dragon 865 released in 2020. To expand the observations to
more hardware types and, more importantly, to understand
SoC performance evolution over time, we performed a lon-
gitudinal study on six mobile SoCs released from 2017 to
2022. We selected six smartphones equipped with high-end
Qualcomm Snapdragon SoCs, with their specifications listed
in Table 6. We repeated our experiments on two workloads
and presented the results in Figure 14.

First, we measured the DL serving latency on ResNet-50
using the same experimental settings as in §5. The results
reveal a significant performance boost in SoC DSPs, with an
8.4× inference latency reduction from the Snapdragon 845
(2018) to the Snapdragon 8+Gen1 (2022). SoC CPUs and
GPUs also show improvements, but not as significantly as
DSPs, with latency reductions of 4.8× and 3.2× from 2017 to
2022, respectively. An additional experiment focusing on in-
ference throughput shows that the latest Snapdragon 8+Gen1
phone achieved 1.7× higher throughput on its DSP when
setting the batch size to 8, compared to the default setup em-
ploying a batch size of 1. Furthermore, the recent incorpora-
tion of support for floating-point calculations on Qualcomm’s
flagship Hexagon DSPs [35] has positioned these proces-
sors as suitable candidates to serve increasingly complex AI
tasks [37, 81, 84].

In live streaming transcoding experiments, we measured
frames processed per second during the transcoding of two
fixed-duration videos (V4 and V5, with metadata detailed in
Table 3). Our key observation is that live streaming transcod-
ing tasks reflect a pattern of gradual performance improve-
ment similar to that seen in DL serving experiments. When
using SoC CPUs, the throughput for video V4 on the Snap-
dragon 865 is 1.42×, 1.82×, and 2.3× higher than that on
855, 845, and 835, respectively. Furthermore, this value in-
creased by 1.8× on the 8+Gen1 phone. This trend is even
more impressive on the hardware codec – the throughput on
the Snapdragon 865 was 3.8× and 3.24× greater than that
on the 835 for V4 and V5, respectively. These performance
improvements are attributed not only to the evolution of hard-
ware but also to the enhancements of software along with the
Android OS upgrades [6, 19].

To conclude, mobile SoCs have shown tremendous per-
formance improvements in the past six years, positioning
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Figure 14: Performance evolution of six high-end Qualcomm
Snapdragon SoCs released between 2017–2022.

them as promising candidates for more complex server-side
workloads. As Moore’s Law approaches its limits, CPU per-
formance evolution might slow down, but the capability of
mobile co-processors (GPUs, DSPs, and hardware codecs)
continue to grow at a rapid pace, and their performance gains
over CPU are also on the rise. To achieve a sustained perfor-
mance evolution for mobile SoC-based servers, it is pivotal
to strategically leverage these co-processors.

8 Discussion and Future Work
Applicability of measurement results. The primary goal of
this study is to inspire the edge computing community with
a new form of edge server, paving the way towards more
efficient computing under constrained deployment environ-
ments (space, electricity, etc.). Currently, the measurement
results are conducted on a specific SoC Cluster with publicly
available commercial services for user access [38]. However,
we believe our primary observations could apply to a broader
range of SoC Cluster-like hardware models and benefit the
community further. First, in terms of performance, the longi-
tudinal study on different SoC models over years (§7) may in-
dicate improved performance of SoC Clusters equipped with
advanced SoC models. Second, improving the networking
subsystem may significantly speed up data-intensive appli-
cations, such as collaborative DL training. The high energy
efficiency of mobile SoCs usually makes them good candi-
dates for workloads they can properly serve at the edge.
Overhead of SoC virtualization. The primary results on
Intel CPUs in this study are measured within Docker contain-
ers, with the same experiments conducted on physical SoCs
without virtualization. For a fair comparison, we measure
DL serving application performance and hardware resource
usage on both physical and virtualized SoCs. Currently, the
virtualization solution of SoC Cluster allows a physical SoC
to only run the Android Linux kernel. A virtualized SoC
uses the same Linux OS and is required to run the Android
framework inside Docker containers, which leads to higher
memory usage as shown in Table 7. In most cases, there are
trivial differences in DL serving performance and hardware
resource usage. One exception is that the immature Android
containerization solution prevents GPU workloads on virtual-
ized SoCs from achieving the same high level of GPU usage



SoC CPU SoC GPU SoC DSPModel Metric Phy. Vir. Phy. Vir. Phy. Vir.
Latency 81.2/0.2 80.4/0.1 32.5/0.4 33.9/0.1 11.0/0.1 10.5/0.01

CPU 52.1/0.3 53.1/0.1 9.0/5.7 9.5/0.1 5.2/2.1 5.7/0.3
GPU 0.7/0.3 0.5/0.1 73.9/1.2 71.3/0.6 0.6/0.1 0.6/0.1R50

Mem 32.3/0.7 37.7/0.2 35.2/5.7 37.6/0.3 32.7/1.9 37.4/0.2
Latency 258.3/0.4 257.8/1.0 100.9/0.1 102.8/0.2 21.0/0.04 20.4/0.02

CPU 53.3/0.1 53.9/0.3 5.9/0.5 8.6/0.1 6.0/0.9 7.1/0.5
GPU 0.4/0.1 0.6/0.1 81.1/0.5 78.5/0.2 0.7/0.1 0.6/0.1R152

Mem 34.9/1.0 40.1/0.1 35.6/2.1 39.8/0.1 33.7/0.8 39.0/0.2
Latency 1121.3/13.7 1113.9/2.8 620.6/1.0 683.7/4.1

CPU 53.9/0.2 54.5/0.1 5.3/0.2 7.6/0.1
GPU 0.5/0.1 0.6/0.04 82.5/0.1 77.1/0.4YOLO

Mem 40.1/0.6 45.9/0.1 39.5/3.3 44.2/0.4

/

Table 7: DL inference performance and hardware usages (av-
erage/standard deviation) on physical SoCs (Phy.) and virtual-
ized SoCs (Vir.). Latency is measured in milliseconds. CPU,
GPU, and memory utilization are represented as percentages.

as on physical SoCs, leading to a slight performance slow-
down (e.g., 60 ms on the YOLOv5x model). We believe the
SoC virtualization implementation can be further improved to
mitigate the potential performance overhead and unnecessary
resource usage when the Android framework is not required.

There are also a few directions to further explore to enhance
the vision of this study.
• Killer applications. SoC Cluster is endowed with ample
storage space and high I/O speed, making it well-suited for
database systems with compatible design patterns [90]. The
SoC-level workload scheduling granularity lends itself to
ephemeral serverless workloads [76]. However, mobile SoCs
are not typically designed to operate at full speed and 24/7
in clouds, presents a challenge for operating SoC Cluster.
The failure of a single SoC subsystem, such as flash, can ren-
der the application and entire SoC unusable. Therefore, fault
tolerance is crucial for the success of SoC Cluster.
• Operating system. Mobile OSs are designed and optimized
for interactive scenarios rather than server workloads. Al-
though it is viable to run Linux or Windows [39] on ARM
SoCs, simply replacing Android with other OSs may result
in the loss of compatibility with native mobile apps, as well
as the inability to leverage certain hardware accelerators if
their drivers are vendor-specific and proprietary [82]. To get
the most from both, the correct approach seems to revise the
original Android OS to fit edge workloads.
• Network infrastructure and topology. We show in §4 that
an overall 20 Gbps network capacity is mostly sufficient to
support video transcoding on all SoCs. However, the lim-
ited bandwidth between SoCs inside SoC Clusters makes the
current network infrastructure is not equipped for workloads
requiring high-volume data exchanges across SoCs. High per-
formance datacenter network interfaces and switches, such as
InfiniBand [1] and NVLink [2], provide network bandwidth
in the hundreds of Gbps, which is two orders of magnitude
higher than the 1 Gbps theoretical bandwidth between SoCs
in SoC Clusters. To support a wider range of data-intensive
applications, SoC Cluster should incorporate recent progress
from network research and industry [1, 17, 79].

9 Related Work
Grouping mobile SoCs as servers. Several previous attempts
have been made to conceptualize a server consisting of com-
pact SoCs. Some researchers have investigated whether mo-
bile SoCs can provide sufficient performance and reduce costs
for HPC [72, 73]. In an effort to reduce e-waste, Shahrad et
al. [77] constructed computational nodes with used smart-
phones, but they analyzed server design without evaluating
real workloads. Switzer et al. created a junkyard cluster [80]
comprising just ten smartphones, with an emphasis on reduc-
ing carbon footprints. Our previous study proposed a similar
vision of renovating mobile SoCs at the edge [86], but limited
experiments and evaluation did not fully reveal the capabili-
ties of SoC Clusters. Other studies have employed IoT/mobile
SoCs to support specific applications, such as video transcod-
ing [64], key-value storage [41], web search [55], and par-
allel computing [44]. However, these studies mainly focus
on specialized app types and lack a performance compari-
son with traditional servers. In contrast, our study utilized a
commercial-off-the-shelf SoC Cluster, conducted application-
driven measurements, and presented extensive performance
metrics to showcase its suitability for modern, computation-
intensive edge workloads.
Energy-efficient cloud/edge. Energy efficiency has been rec-
ognized as a crucial factor in data centers [48]. Various tech-
niques have been explored to advance green data centers,
including workload scheduling and management [60, 63, 65,
74, 91], resource under-provisioning [67, 88], greening the
data-center network [49, 51, 53], among others. In contrast
to these software-level approaches, we propose a redesign of
servers to fundamentally enhance energy efficiency. As the
edge infrastructure is still in its preliminary stage, we consider
such a radical measure to be feasible.

10 Conclusion
In this study, we explored the feasibility and implications
of utilizing a novel type of edge server, SoC Cluster, which
comprises multiple mobile SoCs. We conducted extensive
benchmarking on two typical edge workloads (i.e., video
transcoding and DL serving), and quantitatively demonstrated
SoC Cluster achieves substantial energy savings compared
to conventional edge servers, while also identifying its limi-
tations. These findings highlight the promising potential of
SoC Cluster at the edge, and provide guidance for further
improvements in both hardware and software.
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