
High-density Mobile Cloud Gaming on Edge SoC Clusters

Li Zhang, Shangguang Wang, Mengwei Xu
Beijing University of Posts and Telecommunications

Abstract
System-on-Chip (SoC) Clusters, i.e., servers consisting of

many stacked mobile SoCs, have emerged as a popular plat-
form for serving mobile cloud gaming. Sharing the under-
lying hardware and OS, these SoC Clusters enable native
mobile games to be executed and rendered efficiently with-
out modification. However, the number of deployed game
sessions is limited due to conservative deployment strategies
and high GPU utilization in current game offloading meth-
ods. To address these challenges, we introduce SFG, the first
system that enables high-density mobile cloud gaming on
SoC Clusters with two novel techniques: (1) It employs a
resource-efficient game partitioning and cross-SoC offloading
design that maximally preserves GPU optimization intents
in the standard graphics rendering pipeline; (2) It proposes
an NPU-enhanced game partition coordination strategy to
adjust game performance when co-locating partitioned and
complete game sessions. Our evaluation of five Unity games
shows that SFG achieves up to 4.5× higher game density than
existing methods with trivial performance loss. Equally im-
portant, SFG extends the lifespan of SoC Clusters, enabling
outdated SoC Clusters to serve new games that are unfeasible
on a single SoC due to GPU resource shortages.

1 Introduction

Mobile gaming, a popular and portable entertainment form,
is expected to generate approximately $100 billion globally
in 2024 [24]. The growing complexity of game logic and
graphics has led to the emergence of edge cloud-based mobile
gaming [10, 14]. This approach offloads game execution and
rendering to nearby edge servers, allowing users to experience
high-quality, low-latency gaming on more affordable devices
with reduced battery and disk usage.

Generally, there are two approaches to support mobile gam-
ing. The first one is running mobile operating system on
commodity edge servers with x86/ARM CPUs and NVIDIA
GPUs [3, 5, 11, 16]. However, due to hardware discrepancies

Android
Container

Game
Session

Android
Container

Game
Session

(a) Dedicated
Deployment

Host OS (Android
Linux Kernel)

(b) Game Co-location (c) Game Co-location + Our System

Android
Container

Game
Session

Host OS (Android
Linux Kernel)

Network Interconnected SoCs inside SoC Clusters at Edge Clouds

Partition Coordination

*N

Android
OS

Game
Session Android

Container

Partial
Game

Android
Container

Game
Session

Android
Container

Game
Session

Host OS (Android
Linux Kernel)

Android
Container

Game
Session

Android
Container

Partial
Game

Integrated
NPU

Fr
am

e
Su

pe
r-

re
so

lu
tio

n
on

 N
PU

Figure 1: Hardware/software architecture and different
deployment strategies of mobile gaming on SoC Clusters.

with mobile devices, this method requires either mobile OS
simulation [3, 8, 27, 33, 41] or extensive re-engineering for
compatibility and performance [5,15]. These alterations often
compromise flexibility and game fidelity. Our work focuses
on the second approach that leverages mobile System-on-Chip
(SoC) Clusters [9, 12, 40, 43]. These SoC Clusters host inten-
sive mobile SoCs, each of which is capable of independently
running game sessions. Due to their inherent compatibility
and high fidelity, SoC Clusters have emerged as a popular
platform for mobile cloud gaming.

Low game deployment density on SoC Clusters. Serv-
ing a large number of game sessions can substantially reduce
costs for edge operators. However, current deployment strate-
gies result in low game deployment density due to several
factors. (1) Games often exhibit dynamic resource usage af-
fected by unpredictable user actions and scene changes. (2) To
prevent resource contention and preserve game performance,
edge operators often use a dedicated deployment strategy
that assigns a separate SoC for each game session [43, 44],
as shown in Figure 1(a). This approach leads to severe re-
source waste on SoC Clusters, with an average of 66% for
CPU and 38% for GPU (§2). Simply scaling out SoC Clusters
is not cost-efficient with limited space and electricity sup-

ply at the edge [39]. Furthermore, the evolving capacities of
mobile SoCs and mobile gaming market demand more com-
putation resources for immersive gaming experiences (§2).
SoC Clusters equipped with outdated SoC models will be-
come inadequate for new games, similar to the obsolescence
seen in older smartphones [38]. This leads to further decline
in game deployment density.

To improve game deployment density, a natural idea is to
co-locate multiple game sessions on a single SoC, as shown
in Figure 1(b). However, this is challenging due to mobile
GPU’s limited capacity, which may struggle to simultane-
ously support a few or only two game sessions. For exam-
ple, Genshin Impact [13] uses 52% of GPU resources on its
own. Hosting two such sessions on one SoC significantly
reduces performance – from 45 frames per second (FPS) to
38 FPS as Figure 2 illustrates. Inspired by previous cloud
gaming systems that address resource shortages on user de-
vices [26,31,32,34,36], we explore partitioning and offloading
graphics rendering workloads to use distributed, underutilized
GPU resources across SoCs. A well-designed game partition
strategy would enable multiple SoCs to collaboratively serve
more game sessions. However, prior systems are geared to-
wards device-to-cloud scenarios, where cloud GPUs have al-
most unlimited computing power, and the bottleneck resides
at the network latency. No prior systems have examined how
multiple resource-limited nodes/SoCs can collaboratively sup-
port additional game sessions.

SFG’s approach. We present SFG, the first system for high-
density mobile cloud gaming on SoC Clusters. As shown in
Figure 1(c), SFG operates by partitioning a complete game
instance, and co-locating partitioned sessions with others on
different SoCs. SFG incorporates two key components to
achieve high game density while preserving performance. (1)
A straightforward yet effective game offloading strategy that
enables partitioned game sessions to render only part of the
original game view. Through adapting the game camera’s
projection matrix before rendering, it maintains the intentions
of the default graphics rendering pipeline and conserves GPU
usage more than existing partitioning methods. We further
abstracted the partition decision on game’s screen coordi-
nates system, facilitating flexible balancing of rendering work-
loads. (2) An neural network accelerator (NPU)-enhanced
game partition coordinator. It allows two partitioned game
sessions to swiftly coordinate and shift graphics rendering
workloads to NPUs for better game performance. It exploits a
unique opportunity in SoC Clusters: SoCs are equipped with
NPUs that are left totally idle during gaming. Thereby, SFG
selectively downgrades frame rendering resolution and ap-
plies lightweight frame super-resolution to partitioned game
sessions that underperform the performance target. This ap-
proach addresses GPU shortages without involving external
hardware, while preserving game graphical integrity.

Evaluation. We implemented SFG atop Unity and tested
it with five open-source Unity games. We utilized a commer-

1 2 1 2 1 2 1 2 1 2 3 4
Number of game sessions on a single SoC

0

25

50

75

100

Lo
ad

 (
%

)

Genshin
Impact

Honkai:
Star Rail

Arena
Breakout Identity V Honor of Kings

CPU GPU Memory

0.00

0.25

0.50

0.75

1.00

N
or

m
. A

vg
. F

PS

FPS

Figure 2: Average hardware load and normalized average
FPS of five commercial mobile games. Hardware: Qual-
comm Snapdragon SM8250 SoC.

cial SoC Cluster comprising 60 Qualcomm SM8250 SoCs [2].
The results indicate that SFG achieves up to 4.5× higher game
density compared to dedicated deployment and 1.5× higher
than game co-location baselines. It only incurs a maximum
performance loss of 3.3% and negligible frame quality degra-
dation in a few game sessions. SFG also exhibits capabilities
in serving graphics-intensive games, which outperforms dedi-
cated deployment strategy and game partitioning approaches
that typically cause high GPU usage overhead.

Contributions are summarized below.

• We first disclosed the status quo of mobile cloud gam-
ing on SoC Clusters and their limitations in low game
density.

• We proposed SFG, the first system on SoC Clusters
to achieve high-density mobile cloud gaming. It in-
tegrates a resource-efficient game partitioning design
and an NPU-enhanced partition coordination strategy to
improve game density while maintaining game perfor-
mance.

• We evaluated SFG on a commercial SoC Cluster with
60 mobile SoCs. The results show SFG can remarkably
improve game density with trivial performance loss.

2 Preliminary Measurements

We selected five representative commercial mobile games
from 2023 for a preliminary exploration of existing game
deployment strategies to uncover their limitations.
Dedicated deployment allocates a dedicated hardware for
every game session. Major cloud gaming platforms, such as
Xbox Cloud, use this strategy [44]. Despite ensuring game
performance, this approach leaves over 50% of CPU/GPU
resources underutilized on average [44]. SoC Clusters also
commonly adopt this strategy, as mobile games are originally
designed to operate on individual SoCs. To demystify its ef-
fectiveness, we analyzed the CPU, GPU, and memory load of
five commercial mobile games on a commercial off-the-shelf

25 50 75
Load (%)

Medium Graphics

0.0

0.5

1.0

CD
F

CPU GPU

25 50 75
Load (%)

High Graphics

0.0

0.5

1.0

CD
F

Figure 3: Average hardware load
of the top 30 games from the
Google Play Store. Each game is
tested under both medium and high
graphics qualities.

2015
2017

2019
2021

2023

Year

25

50

75

Lo
ad

 (
%

)

CPU GPU

Figure 4: Average
hardware load of 30
games aggregated by
year. Shaded areas:
min-max load.

SoC Cluster equipped with Qualcomm Snapdragon SM8250
SoCs [2]. The results displayed in Figure 2 indicate that de-
ploying a single game session per SoC indeed preserves game
performance, however leading to substantial underutilization
of hardware resources. Specifically, the average CPU and
memory loads across the five games are 34% and 64%, re-
spectively. GPU utilization varies between 34% and 80%.

Game co-location on single hardware units has been explored
by academia to improve game deployment density [28,35,42].
However, these methods have seen limited application in the
industry mainly because they either require dynamic adjust-
ments to graphics quality during gameplay [28], or rely on
error-prone performance prediction before co-location [35].
In some cases, these approaches might negatively impact user
experience and fail to meet the stringent service level agree-
ments of cloud gaming services. Currently, some mobile cloud
gaming providers adopt a conservative, containerization-
based co-location strategy. Given a performance target, they
pre-profile and record the maximum number of game sessions
a single SoC can support. During the deployment phase, game
sessions are scheduled based on these offline records. For ex-
ample, Figure 2 shows a single SoC can accommodate three
concurrent sessions of “Honor of Kings” without performance
loss. However, the other four games tested could only support
one session per SoC, primarily due to GPU resource limita-
tions. This observation has led us to focus on GPU workloads
as the primary target for optimization.

Evolution of mobile gaming. We extended our experiments
to include the top 30 mobile games on the Google Play Store.
We observed a consistent hardware usage pattern: mobile
games generally consume more GPU than CPU resources.
Figure 3 shows that the GPU is the primary computing re-
source being utilized compared to CPU. By categorizing these
games according to their release year, we observed a nearly
steady increase in average GPU usage over time in Figure 4.
This trend suggests that future mobile games will likely de-
mand even more GPU resources, potentially surpassing the
capabilities of current SoCs. This would disable deploying
new games on old SoC Clusters.

3 SFG Design

3.1 Resource-efficient Game Partition

Improving game density on SoC Clusters requires an effi-
cient game partitioning and offloading design that enables
partitioned game sessions to effectively utilize distributed yet
limited hardware resources. To achieve this goal, we first as-
sess the effectiveness of previous game partitioning methods
to evaluate whether they can aptly partition GPU workloads.
After that, we detail SFG’s game partitioning approach and
its underlying rationales.

3.1.1 Revisiting Prior Game Partitioning Designs

In traditional cloud gaming systems, there are usually two
types of game partition strategies. The first one runs a full
copy of the original game session [26, 32, 34], which is im-
practical in our context as it doesn’t reduce graphics rendering
workloads. The second strategy partitions graphics rendering
workloads to different game sessions. A recent example is the
distance-based game partitioning [36], which divides graphics
rendering workloads in the game world based on a distance
away from the game camera1. As demonstrated in Figure 5(a),
this method partitions the original game world into a near part
(Figure 5(b)) and a remote part (Figure 5(c)). To assess its
effectiveness in separating GPU workloads, we applied it to
an open-source Unity game [18] using three different split
distances. Results displayed in Figure 6 reveal average GPU
usage for complete, near, and remote game sessions. Our main
observation is that distance-based partitioning results in a dis-
proportionately skewed reduction in GPU usage, with the
remote part only showing a marginal decrease of 1% or 2%.
This indicates inefficiency in the partitioning design. More-
over, the summarized GPU load of the near and remote parts
significantly exceeds that of the original game session, in-
dicating an inefficient partitioning design that could lead to
minimal or no benefits.
Insights. We found that the excessive GPU usage primarily
stems from rendering unnecessary game objects. For example,
the shaded areas in Figure 5(c) are unnecessarily rendered
but not visible in the final game scene due to occlusion by the
rendering results in the near part shown in Figure 5(b). On
the contrary, in complete game instances, these unnecessary
rendered areas would be optimized by the default rendering
pipeline [21]. We deduced that the unintended GPU usage
overhead arises from indiscriminate partition decisions that
disrupt the optimization of the default graphics rendering
pipeline. This insight guided us toward a game partition de-
sign that maintains the intentions and optimizations of the
default rendering pipeline.

1The functionality of a game camera is to capture game objects within its
view frustum [22] and determine what game objects should be displayed on
the screen by undergoing complex computations like occlusion culling [21].

(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition

Figure 5: Three different game views in distance-based game partitioning. GPU usage overhead mainly comes from the
occluded objects that are rendered in the remote game view (c) while not displayed in the original game view (a).

10 20 30
Split Distance

0.0

0.5

1.0

1.5

2.0

N
or

m
. G

PU
 L

oa
d

39%⬇︎

2%⬇︎

60%⬆︎

12%⬇2︎%⬇︎

85%⬆︎

14%⬇1︎%⬇︎

85%⬆︎
origin near remote sum

Figure 6: Average GPU load of different game sessions
when utilizing distance-based game partition. “sum”: ac-
cumulated GPU usage of the near part and remote part.

3.1.2 SFG’s Game Partition

To preserve optimizations provided by the standard graphics
rendering pipeline, we borrow the idea from sort-first render-
ing [37], and set partitioned game sessions to focus solely
on rendering a specific portion of the original game view be-
fore the rendering pipeline begins. We demonstrate SFG’s
partition design in Figure 7.
Workflow. In typical game setups, there is a main camera
that captures game objects within its view frustum, processes
them through the rendering pipeline, and finally produces
rendered frames. As shown in Figure 7(a), the main camera
observes the entire area in front of it and projects it onto a
2D screen. SFG injects this process by first replicating the
main camera, and then modifying the projection matrix of the
replicated camera to focus on a subarea on the screen, e.g.,
the upper right area where dense game objects are occluded
behind, as shown in Figure 7(b). Frames generated by the
replicated camera are used as the final rendering outputs.
Abstracted projection matrix adaptation. The projection
matrix of a game camera is responsible for transforming the
game’s 3D world into a 2D screen representation [1]. During
the process, the coordinates of all game objects in the 3D game
world are converted into normalized 2D screen coordinates.
We simplify the projection matrix adaptation by abstracting a
Rectangle(x,y,width,height) data structure to represent the
specific screen area targeted for rendering. An example is
illustrated in Figure 7(b). The x ∈ [0,1] and y ∈ [0,1] indicate
the normalized starting position on the x-axis and y-axis from
the top-left corner of the screen; width and height represent
the normalized dimensions of the rectangle along the x-axis

Main
Camera

Main
Camera

Replicated
Camera

(a) Full game view rendered
by the original main camera

(b) Partial game view rendered
by the replicated camera

Rectangle(
x=0.6, y=0,
width=0.4,
height=0.9)

Figure 7: The original game view captured by the default
game camera (a), and the partial game view captured by
the replicated game camera (b).

and y-axis, respectively. Based on a user-defined Rectangle,
we can flexibly adjust the projection matrix of the replicated
camera to render a partial view identical to the one produced
by the default main game camera. Our evaluation in §4.2
shows that SFG’s partition design effectively reduces GPU
usage overhead, thereby enhancing resource efficiency.

3.2 NPU-enhanced Partition Coordination

To effectively co-locate partitioned game sessions with com-
plete ones on the same SoC, it’s crucial to balance rendering
workloads to achieve optimal game performance. To address
this challenge, we introduce an NPU-enhanced game partition
coordination strategy. It allows partitioned game sessions to
adjust the partitioning decision based on real-time game per-
formance, and utilizes frame super-resolution on SoC NPU
to compensate for GPU shortages when necessary.
Assumptions. We base our strategy on the following prac-
tical assumptions. (1) A complete game session is ideally
partitioned into two parts. Increasing the number of partitions
tends to escalate resource overhead while offering diminish-
ing returns in game density. (2) Game sessions should ideally
render frames at their native resolution to maintain graphical
fidelity. Frame super-resolution is employed only when there
are insufficient resources left. (3) Complete, unpartitioned
game sessions are given priority over partitioned ones, as they
are more prevalent in mobile cloud gaming systems. Thereby,
SFG only applies frame super-resolution to partitioned game
sessions. This helps minimize compromises in graphics fi-

delity across the entire system. Under these assumptions, our
algorithm operates in two stages.
Stage #1: Coordinating and shifting GPU workloads. The
ultimate objective of the first stage is to ensure the perfor-
mance of complete game sessions on at least one of the two
SoCs. This stage deals with the performance of complete
game sessions when partitioned game sessions are collocated
with them. The performance of these complete game sessions
can fall into one of three states. (1) All complete game ses-
sions meet performance targets. If complete game sessions
on both SoCs meet the performance targets, SFG moves di-
rectly to Stage #2 for further processing. (2) All complete
game sessions underperform relative to performance targets.
SFG will coordinate the partition decision between two game
sessions by shifting more graphics rendering workloads from
one session to another. The shifting process typically adjusts
the partition Rectangle incrementally on either the x-axis or
y-axis (e.g., by 0.1) every set interval (e.g., 500 ms). This
adjustment continues until the complete game sessions on
one of the two SoCs meet the performance target, at which
point SFG transitions to the third state. (3) Complete game
sessions on a certain SoC fail to meet the performance target.
Under this situation, SFG proceeds to Stage #2 for further
performance adjustments.
Stage #2: Eliminating GPU shortages through frame
super-resolution on SoC NPUs. The second stage is crit-
ical for ensuring the performance of all game sessions. It is
entered from two specific states outlined in Stage #1. First, if
all complete game sessions meet the performance target, par-
titioned game sessions will too. This is based on observations
from our experiments and attributed to the simple mobile GPU
execution model without priority and preemption [30]. The
second state transformed from Stage #1, where only game ses-
sions deployed on a certain SoC fail to meet the performance
target, indicates a shortage of GPU resources on that specific
SoC. To address this problem, SFG first reduces the target
resolution of rendered frames, which decreases GPU usage
while ensuring the performance of all game sessions. It then
utilizes the unique opportunity in SoC Clusters that massive
integrated but idle SoC NPUs are experts in executing deep
learning models. These rendered low-resolution frames are
upscaled to their target resolution using a lightweight frame
super-resolution model on SoC NPUs, only when there is
enough time budget between frames for injecting this pro-
cess into the graphics rendering pipeline. In our end-to-end
experiments (§4.3), only a small portion of partitioned game
sessions (two out of five evaluated games, 16% of all game
sessions) involve frame super-resolution with minor frame
quality loss.

4 Evaluation

We implemented a prototype of SFG on top of Unity, which
functions as a plugin that can be integrated seamlessly into ex-

isting Unity-based games. We leveraged Unity’s Camera API
to implement SFG’s game partition design. We incorporated
WebRTC into each partitioned game session, utilizing its me-
dia channel for streaming rendered frames and its data chan-
nel for game state synchronization and partition coordination.
We used TFLite [19] to implement frame super-resolution
inference on NPU with Hexagon delegation support [20].

4.1 Setup
Hardware. We used a commercial SoC Cluster (demonstrated
in Figure 1) consisting of 60 Qualcomm Snapdragon SM8250
SoCs released in 2020 [2]. All SoCs are interconnected with
1 Gbps Ethernet using network switches. Each SoC runs an
Android 10 operating system.
Software. We selected five open-sourced Unity games
with varied graphics settings: Sun Temple (1920x1080,
30 FPS) [18], Corridor (1280x720, 30 FPS) [4], Sewer-
Mid (1920x1080, 60 FPS) [6], Sewer-High (2560x1440, 60
FPS) [6], and Viking Village (1920x1080, 30 FPS) [7]. The
selected games include those with high dynamics and rapid
scene changes (e.g., Viking Village), and those with fewer
scene changes, such as Sun Temple. To simulate human game-
play during evaluation and ensure consistent game behav-
iors across game sessions, we employed a record-and-replay
method using Unity’s animation system. We first recorded
interactive scripts for each game, then these scripts are au-
tomatically replayed after the game session starts. We used
TFLite [19] to run the frame super-resolution model, ETDS-
T [25], with int8 quantization on SoC NPUs.
Metrics. Game deployment density is measured by the
maximum number of game sessions that can be deployed on
an SoC Cluster with 60 SoCs. For each SoC, we recorded
(1) CPU load by accessing /proc/stat; (2) GPU load
through Qualcomm’s Adreno GPU driver file in sysfs:
/sys/class/kgsl/kgsl-3d0/gpu_busy_percentage.
We measured FPS for each game session by instrumenting
game runtime and tallying rendered frames over a period.
These metrics were sampled every 500 ms.

4.2 GPU Load Reduction
In this section, we compare the GPU usage of partitioned
game sessions under different strategies. For SFG’s partition,
we vertically split a complete game session into equal left
and right parts (using Rectangle(0,0,0.5,1)). We first assess
the GPU usage of the two partitions. Then, with the distance-
based partition, we aim to match the near-part session’s GPU
usage with SFG’s left part. This approach ensures a fair GPU
usage comparison. Table 1 demonstrates that SFG incurs
lower GPU usage overhead than the distance-based partition.
Specifically, SFG facilitates running resource-intensive games
like Sewer-High and Viking Village on two separate SoCs,
which a single SoC can’t support. In contrast, the distance-

Game GPU Load:
Origin

Partition
Method

GPU Load: Partition
P1 P2 P1+P2 Co(P1+P2)

Sun
Temple 76.1 Distance 57.0 75.4 132.4 92.4 (21.4%↑)

Ours 55.3 73.8 129.1 74.2 (2.50%↓)

Corridor 48.5 Distance 30.0 41.1 71.1 60.0 (23.7%↑)
Ours 29.5 36.1 65.6 56.1 (15.7%↑)

Sewer-Mid 72.4 Distance 59.8 72.7 132.5 85.7 (18.4%↑)
Ours 58.5 56.0 114.5 75.9 (4.83%↑)

Sewer-High 7
Distance 73.8 7 7 7

Ours 71.3 70.2 141.5 7

Viking
Village 7

Distance 80.8 7 7 7
Ours 82.5 79.1 161.6 7

Table 1: Average GPU load of game sessions when utiliz-
ing distance-based game partitioning and our approach.
P1 and P2 represent two partitioned game sessions. P1+P2
indicates the accumulated GPU load of the two partitioned
game sessions, where Co(P1+P2) is the GPU load measured
by co-locating the two parts on the same SoC. 7 means GPU
usage exceeds SoC’s capacity.

Sun Temple Corridor Sewer-Mid Sewer-High Viking Village
0

100

200

300

#
 S

es
si

on
s

60 60 60
90

60

240240
270

60 60 60
90

✘✘✘ 30 ✘✘✘ 30

Dedicated Colo Colo + DisSplit Colo + Ours

Figure 8: Game deployment density comparison between
games and deployment strategies.

based partition fails due to high GPU usage. For the first three
games, SFG reduces GPU usage by 14.8% on average when
co-locating the partitioned game sessions on the same SoC
(Co(P1+P2) in Table 1). Although the reduction in absolute
GPU usage is modest, it significantly impacts given the lim-
ited, fragmented resources on each SoC. We will next reveal
the effectiveness of SFG’s game partitioning strategy in the
end-to-end game density evaluation.

4.3 End-to-end Game Deployment

Baselines. We selected the following baselines for comparing
game deployment density.
• Dedicated deployment strategy: Assigning each game ses-
sion to a dedicated SoC, a common practice in existing mobile
cloud gaming systems [40, 44].
• Colo (Co-location): An approach that allows multiple com-
plete game sessions to co-locate on a single SoC if they
achieve the performance target. This approach is used by
edge operators to improve game density on SoC Clusters
(§2).
• Colo + DisSplit co-locates partitioned game sessions using
distance-based partition strategy [36] with complete game
sessions. It ensures the SoC serving the near part achieves a
nearly full GPU load while meeting the performance target.
Then the remote game session is scheduled on another SoC.
If the remote part fails to meet the performance target, the

Sun Temple Corridor Sewer-Mid Sewer-High Viking Village
0.0

0.5

1.0

99
th

 F
PS

✘✘✘ ✘✘✘

Dedicated Colo Colo + DisSplit Colo + Ours

Figure 9: Normalized 99th FPS of different games with
different deployment strategies. FPS values are averaged
across multiple game sessions on the same hardware.

0

50

100

CP
U

 L
oa

d

✘✘✘ ✘✘✘

Dedicated Colo Colo + DisSplit Colo + Ours

Sun Temple Corridor Sewer-Mid Sewer-High Viking Village
0

50

100

G
PU

 L
oa

d

✘✘✘ ✘✘✘

Figure 10: Average SoC CPU/GPU load. Hardware load
are averaged if one game is partitioned to different SoCs.

game session will be ejected.
• Colo + Ours: Integrating SFG with game co-location to
boost game density. Initially, it vertically partitions a game
into equal left and right parts. In the partition coordination
stage, the x-axis step is 0.1 and the time interval is 500 ms.

Overall, SFG remarkably improves game density with min-
imal impact on performance and CPU usage.
Game density. As shown in Figure 8, SFG significantly en-
hances game density over previous baselines. (1) For resource-
demanding games like Sewer-High and Viking Village, which
a single SoC cannot support, SFG’s partitioned sessions can
be served by two separate SoCs. This approach enables sup-
port for 30 game sessions on 60 SoCs. The distance-based
partition, however, fails to achieve similar outcomes. (2) For
games that can be accommodated into a single SoC, SFG
efficiently utilizes limited remaining resources to host an ad-
ditional 30 game sessions. In cases like Sun Temple and
Sewer-Mid, SFG attains 1.5× higher density than that of co-
location baselines.
Game performance. Figure 9 presents the normalized 99th
percentage FPS for all games under different deployment
strategies. Compared to baselines, SFG consistently maintains
game performance, with a minor FPS reduction observed in
Sewer-Mid. Specifically, compared to the dedicated deploy-
ment, employing SFG results in a 3.3% decrease in FPS (from
54 to 52).
Hardware load. Figure 10 shows the results of hardware load.
On average, SFG increases GPU load by 22.4% compared to
dedicated deployment and by 7.5% compared to the game co-
location method. The average maximum GPU load reaches
97.3%, indicating near-full utilization of GPU resources on a

Game SR
Conf

Time
Budget

SR
Time

Frame
Time

Total
Time

Frame
Quality

Corridor 640x360 x2 33.3 (30 FPS) 16.0 8.9 24.9 33.4
Sun Temple 640x360 x3 33.3 (30 FPS) 18.9 4.76 23.7 29.8

Table 2: Frame super-resolution (SR) metrics breakdown.
SR Conf indicates the resolution of the source frame and
the scaling factor of the SR model. Time budget refers to
the available time for graphics rendering and frame super-
resolution given an FPS requirement. Time is measured in
milliseconds. Frame quality is measured by PSNR [29].

single SoC. Additionally, SFG incurs an average CPU load
increase of 12.4%, attributable to redundant game logic exe-
cution and SFG’s operational cost.
SFG’s partition coordination and frame super-resolution.
Besides the end-to-end experiments, we conducted additional
experiments to demonstrate the functionality of SFG’s game
partitioning and frame super-resolution. SFG began by ver-
tically partitioning each complete game session with a left
part ratio of 0.5 (Rectangle(0,0,0.5,1)). Specifically, Sewer-
Mid, Sewer-High, and Viking Village maintained this ratio
to achieve the performance target, without employing frame
super-resolution. Conversely, both Corridor and Sun Tem-
ple utilized a 0.4 partition ratio, where their left parts (0.4)
rendered frames at native resolution, and their right parts em-
ployed frame super-resolution. Detailed configurations and
simulated metrics are provided in Table 2. Overall, both parti-
tioned sessions completed graphics rendering and frame super-
resolution on SoC NPU within the allocated time budget, with
only negligible frame quality loss measured by PSNR [29]
(values above 30 indicate satisfactory frame quality). Further-
more, the ongoing advancements in mobile NPU technology
within recent mobile SoC models are expected to significantly
enhance the implementation of frame super-resolution on
mobile NPUs [17, 23].

5 Conclusion
This paper proposed SFG, the first system for high-density
mobile cloud gaming on edge SoC Clusters. It employs two
key techniques (1) to reduce the high GPU resource usage
overhead of previous game partitioning systems; and (2) to
guarantee the performance of co-located game sessions. We
developed a prototype of SFG and conducted tests on five
open-source Unity games. The results demonstrate its ef-
fectiveness in reducing resource usage overhead, enabling
high-density gaming deployment on SoC Clusters with trivial
performance loss.

Acknowledgments
We thank the anonymous reviewers for their valuable feedback
on this work. This work was supported by National Key R&D
Program of China (No.2021ZD0113001), NSFC (62102045,
62032003, 61921003), and China Institute of IoT (Wuxi).
Mengwei Xu is the corresponding author of this work.

References

[1] Opengl projection matrix. http://www.songho.ca/
opengl/gl_projectionmatrix.html, 2019.

[2] Hardware | qualcomm snapdragon 865 5g mo-
bile platform | 5g mobile processor | qual-
comm. https://www.qualcomm.com/products/
application/smartphones/snapdragon-8-
series-mobile-platforms/snapdragon-865-
5g-mobile-platform, 2020.

[3] Android-x86. https://www.android-x86.org/,
2022.

[4] Corridor lightning example | unity asset store.
https://assetstore.unity.com/packages/
essentials/tutorial-projects/corridor-
lighting-example-33630, 2022.

[5] Nvidia and ampere computing create arm-
based server platform to stream mobile games.
https://amperecomputing.com/press/nvidia-
and-ampere-computing-create-arm-based-
server-platform-to-stream-mobile-games,
2022.

[6] Sewer/underground | unity asset store. https:
//assetstore.unity.com/packages/3d/
environments/sewer-underground-modular-
pack-v4-0-112692, 2022.

[7] Viking village urp | unity asset store. https:
//assetstore.unity.com/packages/essentials/
tutorial-projects/viking-village-urp-29140,
2022.

[8] Anbox cloud. https://anbox-cloud.io/, 2023.

[9] Aws device farm. https://aws.amazon.com/device-
farm/, 2023.

[10] Caregame | mobile cloud gaming. https://
www.caregame.com/, 2023.

[11] Cuttlefish virtual android devices. https:
//source.android.com/docs/setup/create/
cuttlefish, 2023.

[12] Firebase test lab | test in the lab, not on your
users. https://firebase.google.com/products/
test-lab, 2023.

[13] Genshin impact. https://genshin.hoyoverse.com/
en/, 2023.

[14] Genshin impact cloud. https://
cloudgenshin.hoyoverse.com/en-us, 2023.

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-5g-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-5g-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-5g-mobile-platform
https://www.qualcomm.com/products/application/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-865-5g-mobile-platform
https://www.android-x86.org/
https://assetstore.unity.com/packages/essentials/tutorial-projects/corridor-lighting-example-33630
https://assetstore.unity.com/packages/essentials/tutorial-projects/corridor-lighting-example-33630
https://assetstore.unity.com/packages/essentials/tutorial-projects/corridor-lighting-example-33630
https://amperecomputing.com/press/nvidia-and-ampere-computing-create-arm-based-server-platform-to-stream-mobile-games
https://amperecomputing.com/press/nvidia-and-ampere-computing-create-arm-based-server-platform-to-stream-mobile-games
https://amperecomputing.com/press/nvidia-and-ampere-computing-create-arm-based-server-platform-to-stream-mobile-games
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modular-pack-v4-0-112692
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modular-pack-v4-0-112692
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modular-pack-v4-0-112692
https://assetstore.unity.com/packages/3d/environments/sewer-underground-modular-pack-v4-0-112692
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://assetstore.unity.com/packages/essentials/tutorial-projects/viking-village-urp-29140
https://anbox-cloud.io/
https://aws.amazon.com/device-farm/
https://aws.amazon.com/device-farm/
https://www.caregame.com/
https://www.caregame.com/
https://source.android.com/docs/setup/create/cuttlefish
https://source.android.com/docs/setup/create/cuttlefish
https://source.android.com/docs/setup/create/cuttlefish
https://firebase.google.com/products/test-lab
https://firebase.google.com/products/test-lab
https://genshin.hoyoverse.com/en/
https://genshin.hoyoverse.com/en/
https://cloudgenshin.hoyoverse.com/en-us
https://cloudgenshin.hoyoverse.com/en-us

[15] Intel bridge technology. https://www.intel.com/
content/www/us/en/developer/topic-
technology/bridge-technology.html, 2023.

[16] Run apps on the android emulator. https:
//developer.android.com/studio/run/emulator,
2023.

[17] Snapdragon 8 gen 3 mobile platform.
https://www.qualcomm.com/products/mobile/
snapdragon/smartphones/snapdragon-8-
series-mobile-platforms/snapdragon-8-gen-
3-mobile-platform, 2023.

[18] Sun temple - unity asset store. https:
//assetstore.unity.com/packages/3d/
environments/sun-temple-115417, 2023.

[19] Tensorflow Lite. https://www.tensorflow.org/
lite, 2023.

[20] Tensorflow lite hexagon delegate. https:
//www.tensorflow.org/lite/android/delegates/
hexagon, 2023.

[21] Unity - manual: Occlusion culling.
https://docs.unity3d.com/Manual/
OcclusionCulling.html, 2023.

[22] Viewing frustum - wikipedia. https:
//en.wikipedia.org/wiki/Viewing_frustum,
2023.

[23] World’s first on-device demonstration of stable
diffusion on android. https://www.qualcomm.com/
news/onq/2023/02/worlds-first-on-device-
demonstration-of-stable-diffusion-on-
android, 2023.

[24] Mobile games - worldwide | statista market fore-
cast. https://www.statista.com/outlook/dmo/
digital-media/video-games/mobile-games/
worldwide, 2024.

[25] Jiahao Chao, Zhou Zhou, Hongfan Gao, Jiali Gong,
Zhengfeng Yang, Zhenbing Zeng, and Lydia Dehbi.
Equivalent transformation and dual stream network con-
struction for mobile image super-resolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14102–14111, 2023.

[26] Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron
Lebeck, Ali Razeen, Madan Musuvathi, and Stefan
Saroiu. Kahawai: High-quality mobile gaming using
gpu offload. In MobiSys’15. ACM – Association for
Computing Machinery, May 2015.

[27] Di Gao, Hao Lin, Zhenhua Li, Chengen Huang, Liangyi
Gong, Feng Qian, Yunhao Liu, and Tianyin Xu. Trin-
ity: High-performance mobile emulation through graph-
ics projection. In 16th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 22).
USENIX Association, 2022.

[28] Sergey Grizan, David Chu, Alec Wolman, and Roger
Wattenhofer. djay: Enabling high-density multi-tenancy
for cloud gaming servers with dynamic cost-benefit gpu
load balancing. In Proceedings of the sixth ACM sym-
posium on cloud computing, pages 58–70, 2015.

[29] Alain Horé and Djemel Ziou. Image quality metrics:
Psnr vs. ssim. In 2010 20th International Conference
on Pattern Recognition, pages 2366–2369, 2010.

[30] Gang Huang, Mengwei Xu, Felix Xiaozhu Lin, Yunxin
Liu, Yun Ma, Saumay Pushp, and Xuanzhe Liu. Shuffle-
dog: characterizing and adapting user-perceived latency
of android apps. IEEE Transactions on Mobile Comput-
ing, 16(10):2913–2926, 2017.

[31] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ning-
wei Dai. Furion: Engineering high-quality immersive
virtual reality on today’s mobile devices. In Proceedings
of the 23rd Annual International Conference on Mobile
Computing and Networking, pages 409–421, 2017.

[32] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes
Kopf, Yury Degtyarev, Sergey Grizan, Alec Wolman,
and Jason Flinn. Outatime: Using speculation to en-
able low-latency continuous interaction for mobile cloud
gaming. In MobiSys 2015. ACM - Association for Com-
puting Machinery, June 2015.

[33] Linsheng Li, Bin Yang, Cathy Bao, Shuo Liu, Randy
Xu, Yong Yao, Mohammad R Haghighat, Jerry W Hu,
Shoumeng Yan, and Zhengwei Qi. Droidcloud: Scalable
high density androidtm cloud rendering. In Proceedings
of the 28th ACM International Conference on Multime-
dia, pages 3348–3356, 2020.

[34] Yong Li and Wei Gao. Muvr: Supporting multi-user mo-
bile virtual reality with resource constrained edge cloud.
In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 1–16. IEEE, 2018.

[35] Yusen Li, Chuxu Shan, Ruobing Chen, Xueyan Tang,
Wentong Cai, Shanjiang Tang, Xiaoguang Liu, Gang
Wang, Xiaoli Gong, and Ying Zhang. Gaugur: Quan-
tifying performance interference of colocated games
for improving resource utilization in cloud gaming. In
Proceedings of the 28th international symposium on
high-performance parallel and distributed computing,
pages 231–242, 2019.

https://www.intel.com/content/www/us/en/developer/topic-technology/bridge-technology.html
https://www.intel.com/content/www/us/en/developer/topic-technology/bridge-technology.html
https://www.intel.com/content/www/us/en/developer/topic-technology/bridge-technology.html
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://www.qualcomm.com/products/mobile/snapdragon/smartphones/snapdragon-8-series-mobile-platforms/snapdragon-8-gen-3-mobile-platform
https://assetstore.unity.com/packages/3d/environments/sun-temple-115417
https://assetstore.unity.com/packages/3d/environments/sun-temple-115417
https://assetstore.unity.com/packages/3d/environments/sun-temple-115417
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/android/delegates/hexagon
https://www.tensorflow.org/lite/android/delegates/hexagon
https://www.tensorflow.org/lite/android/delegates/hexagon
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/OcclusionCulling.html
https://en.wikipedia.org/wiki/Viewing_frustum
https://en.wikipedia.org/wiki/Viewing_frustum
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.qualcomm.com/news/onq/2023/02/worlds-first-on-device-demonstration-of-stable-diffusion-on-android
https://www.statista.com/outlook/dmo/digital-media/video-games/mobile-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/mobile-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/mobile-games/worldwide

[36] Jiayi Meng, Sibendu Paul, and Y Charlie Hu. Coterie:
Exploiting frame similarity to enable high-quality mul-
tiplayer vr on commodity mobile devices. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 923–937, 2020.

[37] Steven Molnar, Michael Cox, David Ellsworth, and
Henry Fuchs. A sorting classification of parallel ren-
dering. IEEE computer graphics and applications,
14(4):23–32, 1994.

[38] Jennifer Switzer, Gabriel Marcano, Ryan Kastner, and
Pat Pannuto. Junkyard computing: Repurposing dis-
carded smartphones to minimize carbon. In Proceed-
ings of the 28th ACM International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, Volume 2, pages 400–412, 2023.

[39] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li,
Feng Qian, Shangguang Wang, Ke Li, Jingyu Yang, and
Xuanzhe Liu. From cloud to edge: a first look at public
edge platforms. In Proceedings of the 21st ACM Internet
Measurement Conference, pages 37–53, 2021.

[40] Mengwei Xu, Li Zhang, and Shangguang Wang. Posi-
tion paper: Renovating edge servers with arm socs. In
2022 IEEE/ACM 7th Symposium on Edge Computing
(SEC), pages 216–223. IEEE, 2022.

[41] Qifan Yang, Zhenhua Li, Yunhao Liu, Hai Long, Yuan-
chao Huang, Jiaming He, Tianyin Xu, and Ennan Zhai.
Mobile gaming on personal computers with direct an-
droid emulation. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–15, 2019.

[42] Chao Zhang, Jianguo Yao, Zhengwei Qi, Miao Yu, and
Haibing Guan. vgasa: Adaptive scheduling algorithm of
virtualized gpu resource in cloud gaming. IEEE Transac-
tions on Parallel and Distributed Systems, 25(11):3036–
3045, 2013.

[43] Li Zhang, Zhe Fu, Boqing Shi, Xiang Li, Rujin Lai,
Chenyang Chen, Ao Zhou, Xiao Ma, Shangguang Wang,
and Mengwei Xu. Soc-cluster as an edge server: an
application-driven measurement study. arXiv preprint
arXiv:2212.12842, 2022.

[44] Wei Zhang, Binghao Chen, Zhenhua Han, Quan Chen,
Peng Cheng, Fan Yang, Ran Shu, Yuqing Yang, and
Minyi Guo. Pilotfish: Harvesting free cycles of cloud
gaming with deep learning training. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22), pages
217–232, 2022.

	Introduction
	Preliminary Measurements
	SFG Design
	Resource-efficient Game Partition
	Revisiting Prior Game Partitioning Designs
	SFG's Game Partition

	NPU-enhanced Partition Coordination

	Evaluation
	Setup
	GPU Load Reduction
	End-to-end Game Deployment

	Conclusion

