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Mobile Games
• Mobile games: A popular and portable form of entertainment on daily 

smartphones
• Huge and growing market: An estimate of 100 billion USD revenue 

globally
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Mobile Games: Huge Resource Requirements
• Better gaming experiences call for huge hardware resources.
• Games are becoming “bigger” and “more complex”; fully load the

latest, powerful mobile processors.

These new, resource-consuming mobile games retire old 
smartphones sooner or later!



Mobile Cloud Gaming Services
• Better gaming experiences call for huge hardware resources.
• Games are becoming “bigger” and “more complex”; fully load the 

latest, powerful mobile processors.

Mobile Cloud Gaming Infrastructure

End Users
Network

ü Instant access
ü High compatibility
ü Immersive game 

experience
ü Reduced hardware 

cost



Mobile Cloud Gaming Infrastructure
• Traditional approach: Mobile environment emulation on Intel/ARM 

CPUs with server-level GPUs (e.g., NVIDIA GPUs)

Windows/Linux OSes

Android OS Emulation

Traditional Approach

Mobile Gaming Instances
q Pros: Share the same hardware as other general 

workloads

q Cons:
§ Performance loss: OS emulation required
§ Low flexibility, huge human efforts: Require

game reengineering to solve compatibility
and performance issues

§ Limited game availability: Game developers 
may not provide app packages for other 
hardware architecture (e.g., x86) 



Mobile Cloud Gaming Infrastructure
• System-on-Chip Clusters: Group multiple mobile processors inside a 

server; provide identical mobile environments as on user 
smartphones.

System-on-Chip Clusters

Native Android OSes

Mobile Gaming Instances

q The same mobile context: No 
OS/game modification required

q Easy of deployment: Games are 
optimized for a single mobile 
processor

What are the drawbacks of 
using SoC Clusters?
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Low Game Deployment Density
• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.
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Low Game Deployment Density
• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.

• Experiment on five commercial mobile games

q Four out of all five games can only 
run one game session.

q A huge resource waste when only 
one game session is running.

Wasted resources: > 50% CPU and > 25% GPU



Low Game Deployment Density

GPU bottlenecks!

q Four out of all five games can only 
run one game session.

q A huge resource waste when only 
one game session is running.

q Limited GPU resources per SoC 
bottleneck game deployment 
density.

• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.

• Experiment on five commercial mobile games



Goal of this Work
• Our goal: Run more mobile game within limited hardware resources 

of mobile SoCs.
• Similar to the goal of traditional cloud gaming systems! 

• Their approach: They partition complete game instances, but in the 
cloud, they all consume a bunch of resources.
• Run a full game copy.
• Run a partial game instance, which still consumes a lot of resources.

How well do previous cloud gaming systems perform here?



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

q Trivial GPU load reduction at 
the remote game part.

q Even higher accumulated 
GPU load after game 
partitioning.



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

The occluded areas are 
unnecessarily rendered after 

game partitioning.

Preserve the optimizations brought by the default 
graphics rendering pipeline.



Our System: SFG
• A simple yet efficient partitioning method: Partition graphics 

rendering workloads before rendering (like the sort-first rendering[1])
• More flexibility: Use an abstracted rectangle to represent the target 

area for rendering; Runtime adjustment

[1] Steven Molna et al. A sorting classification of parallel rendering. IEEE computer graphics and applications,1994.
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(a) Full game view rendered 
by the original main camera

(b) Partial game view rendered 
by the replicated camera

Rectangle(
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height=0.9) 

Main 
Camera

Main 
Camera

Replicated 
Camera

(a) Full game view rendered 
by the original main camera

(b) Partial game view rendered 
by the replicated camera

Rectangle(
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width=0.4, 
height=0.9) 



Our System: SFG
• NPU-enhanced game partition coordination to handle game usage 

dynamics
• Assumption: Render native frames first; then use frame super-

resolution on SoC NPUs if there is no GPU resource left
• Approach: A two-stage coordination
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Stage #1: Partition Coordinationq Stage #1: Shifting GPU rendering 
workloads to make all game sessions on 
one of the SoCs meet the target (every 
500 ms).

✅ All meet the FPS



Our System: SFG
• NPU-enhanced game partition coordination to handle game usage 

dynamics
• Assumption: Render native frames first; then use frame super-

resolution on SoC NPUs if there is no GPU resource left
• Approach: A two-stage coordination
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q Stage #1: Shifting GPU rendering 
workloads to make all game sessions on 
one of the SoCs meet the target (every 
500 ms).

q Stage #2 (optional): Apply frame super-
resolution on a partial game session if 
game sessions on one of the SoC do not 
meet the FPS. 

Integrated 
NPU

Stage #2: Frame Super-
resolution on NPU



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

[1] Chao et al., Equivalent Transformation and Dual Stream Network Construction for Mobile Image Super-Resolution. CVPR 2023



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

• Software
• Games: Five open-source Unity games with varied graphics settings

Game Resolution FPS Feature

Sun Temple 1920 * 1080 30 Infrequent scene switch

Corridor 1280 * 720 30 Fast scene switch

Sewer Mid 1920 * 1080 60 Medium scene switch

Sewer High 2560 * 1440 60 Medium scene switch

Viking Village 1920 * 1080 30 High dynamics, fast scene switch



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

• Software
• Games: Five open-source Unity games with varied graphics settings
• Game play simulation: Manually recorded interactive scripts powered by Unity’s 

animation system; replayed at game runtime for deterministic interaction.

• Hardware
• An SoC Cluster consisting of 60 Qualcomm Snapdragon 865 SoCs; Android 10 OS
• 1 Gbps network bandwidth between individual SoCs



Effectiveness of Game Partitioning Design
• Baseline: Distance-based game partitioning proposed in Coterie
• Our partition design 
• Reduces the GPU load by an average of 15%.
• Enables running games on two SoCs that cannot be supported on individual ones.



Effectiveness of Game Partitioning Design
• Baseline: Distance-based game partitioning proposed in Coterie
• Our partition design 
• Reduces the GPU load by an average of 15%.
• Enables running games on two SoCs that cannot be supported on individual ones.

✅

✅

Deployable on 
two SoCs!



End-to-end Game Deployment
• Baselines
• Dedicated deployment: One game instance per SoC.
• Game co-location: One or more game instance per SoCs.
• Game co-location with distance-based game partitioning
• Game co-location with our system

• Game deployment density on a whole SoC Cluster (60 SoCs)

q Support games exceeding 
the capacity of one SoC.



End-to-end Game Deployment
• Baselines
• Dedicated deployment: One game instance per SoC.
• Game co-location: One or more game instance per SoCs.
• Game co-location with distance-based game partitioning
• Game co-location with our system

• Game deployment density on a whole SoC Cluster (60 SoCs)

q Support games exceeding 
the capacity of one SoC.

q Up to 4.5x improvement 
over dedicated deployment.

q Up to 1.5x improvement 
over previous co-location 
methods.

4.5x 1.5x1.5x



End-to-end Game Deployment
• Game performance (FPS)

Trivial game performance reduction on Sewer-Mid: 
Average FPS drops from 54 to 52. (Target FPS: 55)



End-to-end Game Deployment
• Hardware load

q GPU load: 22% increase compared to dedicated deployment; 
7.5% increase compared to game co-location.

q The average GPU load reaches 97%.
q The additional CPU costs incurred by duplicate game logic is 

manageable by a single SoC.



End-to-end Game Deployment
• Frame super-resolution
• Frame super-resolution is a complementary solution for GPU shortage.
• 2 out of all 5 games, 16% of all game sessions involve frame super-resolution.

q The frame super-resolution process can be injected into the 
frame rendering process (the overall latency is less than the 
time budget for rendering a frame).

q Satisfactory frame quality (a PSNR value larger than 30).
q Mobile NPUs are still fast growing! (15 TOPS on Snapdragon 

865 SoC vs. the latest Snapdragon 8 Gen 3)



Conclusion
• Reveal the status quo of mobile cloud gaming on SoC Clusters.
• The first system for high-density mobile cloud gaming on SoC Clusters.
• Two simple yet efficient techniques
• Pre-rendering game partitioning
• NPU-enhanced game partitioning coordination mechanism

• Improvement in game deployment density and the ability to support 
games that cannot be supported by an individual SoC.
• SFG Code: https://github.com/lizhang20/SFG

High-density Mobile Cloud Gaming on Edge SoC Clusters

Li Zhang, Shangguang Wang, Mengwei Xu
Beijing University of Posts and Telecommunications (BUPT)

https://github.com/lizhang20/SFG

