
High-density Mobile Cloud Gaming on 
Edge SoC Clusters
Li Zhang, Shangguang Wang, Mengwei Xu

Beijing University of Posts and Telecommunications (BUPT)

2024 USENIX Annual Technical Conference



Mobile Games
• Mobile games: A popular and portable form of entertainment on daily 

smartphones
• Huge and growing market: An estimate of 100 billion USD revenue 

globally

0

20

40

60

80

100

120

140

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

Mobile Games Revenue (Billion USD) 

Revenue

Source: https://www.statista.com/outlook/dmo/digital-
media/video-games/mobile-games/worldwide

https://www.statista.com/outlook/dmo/digital-media/video-games/mobile-games/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-games/mobile-games/worldwide


Mobile Games: Huge Resource Requirements
• Better gaming experiences call for huge hardware resources.
• Games are becoming “bigger” and “more complex”; fully load the

latest, powerful mobile processors.

These new, resource-consuming mobile games retire old 
smartphones sooner or later!



Mobile Cloud Gaming Services
• Better gaming experiences call for huge hardware resources.
• Games are becoming “bigger” and “more complex”; fully load the 

latest, powerful mobile processors.

Mobile Cloud Gaming Infrastructure

End Users
Network

ü Instant access
ü High compatibility
ü Immersive game 

experience
ü Reduced hardware 

cost



Mobile Cloud Gaming Infrastructure
• Traditional approach: Mobile environment emulation on Intel/ARM 

CPUs with server-level GPUs (e.g., NVIDIA GPUs)

Windows/Linux OSes

Android OS Emulation

Traditional Approach

Mobile Gaming Instances
q Pros: Share the same hardware as other general 

workloads

q Cons:
§ Performance loss: OS emulation required
§ Low flexibility, huge human efforts: Require

game reengineering to solve compatibility
and performance issues

§ Limited game availability: Game developers 
may not provide app packages for other 
hardware architecture (e.g., x86) 



Mobile Cloud Gaming Infrastructure
• System-on-Chip Clusters: Group multiple mobile processors inside a 

server; provide identical mobile environments as on user 
smartphones.

System-on-Chip Clusters

Native Android OSes

Mobile Gaming Instances

q The same mobile context: No 
OS/game modification required

q Easy of deployment: Games are 
optimized for a single mobile 
processor

What are the drawbacks of 
using SoC Clusters?



Android
OS

Game 
Session

Android
OS

Game 
Session

Low Game Deployment Density
• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.

Dedicated 
Deployment

Android
OS

Game 
Session

Game 
Co-location

Android
OS

Game 
Session

*N



Low Game Deployment Density
• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.

• Experiment on five commercial mobile games

q Four out of all five games can only 
run one game session.

q A huge resource waste when only 
one game session is running.

Wasted resources: > 50% CPU and > 25% GPU



Low Game Deployment Density

GPU bottlenecks!

q Four out of all five games can only 
run one game session.

q A huge resource waste when only 
one game session is running.

q Limited GPU resources per SoC 
bottleneck game deployment 
density.

• Conservative game deployment methods
• Dedicated deployment: Deploy one game instance per mobile SoC.
• Game co-location: Co-locate multiple game instances on the same mobile 

SoC through pre-profiling.

• Experiment on five commercial mobile games



Goal of this Work
• Our goal: Run more mobile game within limited hardware resources 

of mobile SoCs.
• Similar to the goal of traditional cloud gaming systems! 

• Their approach: They partition complete game instances, but in the 
cloud, they all consume a bunch of resources.
• Run a full game copy.
• Run a partial game instance, which still consumes a lot of resources.

How well do previous cloud gaming systems perform here?



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition(a) Original game view before partition (b) Near-part game view after partition (c) Remote-part game view after partition



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

q Trivial GPU load reduction at 
the remote game part.

q Even higher accumulated 
GPU load after game 
partitioning.



Revisit Prior Game Partitioning Designs
• [ASPLOS’20] Coterie: Exploiting Frame Similarity to Enable High-

Quality Multiplayer VR on Commodity Mobile Devices
• Split the whole game world into a near part and a remote part.

The occluded areas are 
unnecessarily rendered after 

game partitioning.

Preserve the optimizations brought by the default 
graphics rendering pipeline.



Our System: SFG
• A simple yet efficient partitioning method: Partition graphics 

rendering workloads before rendering (like the sort-first rendering[1])
• More flexibility: Use an abstracted rectangle to represent the target 

area for rendering; Runtime adjustment

[1] Steven Molna et al. A sorting classification of parallel rendering. IEEE computer graphics and applications,1994.

Main 
Camera

Main 
Camera

Replicated 
Camera

(a) Full game view rendered 
by the original main camera

(b) Partial game view rendered 
by the replicated camera

Rectangle(
x=0.6, y=0, 
width=0.4, 
height=0.9) 

Main 
Camera

Main 
Camera

Replicated 
Camera

(a) Full game view rendered 
by the original main camera

(b) Partial game view rendered 
by the replicated camera

Rectangle(
x=0.6, y=0, 
width=0.4, 
height=0.9) 



Our System: SFG
• NPU-enhanced game partition coordination to handle game usage 

dynamics
• Assumption: Render native frames first; then use frame super-

resolution on SoC NPUs if there is no GPU resource left
• Approach: A two-stage coordination

Android
OS

Game 
Session

Android
OS

Game 
Session

Android
OS

Game 
Session

Android
OS

Game 
Session

Android
Container

Partial 
Game

Android
Container

Partial 
Game

Stage #1: Partition Coordinationq Stage #1: Shifting GPU rendering 
workloads to make all game sessions on 
one of the SoCs meet the target (every 
500 ms).

✅ All meet the FPS



Our System: SFG
• NPU-enhanced game partition coordination to handle game usage 

dynamics
• Assumption: Render native frames first; then use frame super-

resolution on SoC NPUs if there is no GPU resource left
• Approach: A two-stage coordination

Android
OS

Game 
Session

Android
Container

Partial 
Game

q Stage #1: Shifting GPU rendering 
workloads to make all game sessions on 
one of the SoCs meet the target (every 
500 ms).

q Stage #2 (optional): Apply frame super-
resolution on a partial game session if 
game sessions on one of the SoC do not 
meet the FPS. 

Integrated 
NPU

Stage #2: Frame Super-
resolution on NPU



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

[1] Chao et al., Equivalent Transformation and Dual Stream Network Construction for Mobile Image Super-Resolution. CVPR 2023



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

• Software
• Games: Five open-source Unity games with varied graphics settings

Game Resolution FPS Feature

Sun Temple 1920 * 1080 30 Infrequent scene switch

Corridor 1280 * 720 30 Fast scene switch

Sewer Mid 1920 * 1080 60 Medium scene switch

Sewer High 2560 * 1440 60 Medium scene switch

Viking Village 1920 * 1080 30 High dynamics, fast scene switch



Evaluation
• Implementation
• A Unity Plugin that can be easily integrated into any Unity-based games
• Game partitioning: Unity’s Camera API
• Game states and rendering results synchronization: WebRTC
• Frame super-resolution: The quantized ETDS[1] model; TFLite on SoC NPUs

• Software
• Games: Five open-source Unity games with varied graphics settings
• Game play simulation: Manually recorded interactive scripts powered by Unity’s 

animation system; replayed at game runtime for deterministic interaction.

• Hardware
• An SoC Cluster consisting of 60 Qualcomm Snapdragon 865 SoCs; Android 10 OS
• 1 Gbps network bandwidth between individual SoCs



Effectiveness of Game Partitioning Design
• Baseline: Distance-based game partitioning proposed in Coterie
• Our partition design 
• Reduces the GPU load by an average of 15%.
• Enables running games on two SoCs that cannot be supported on individual ones.



Effectiveness of Game Partitioning Design
• Baseline: Distance-based game partitioning proposed in Coterie
• Our partition design 
• Reduces the GPU load by an average of 15%.
• Enables running games on two SoCs that cannot be supported on individual ones.

✅

✅

Deployable on 
two SoCs!



End-to-end Game Deployment
• Baselines
• Dedicated deployment: One game instance per SoC.
• Game co-location: One or more game instance per SoCs.
• Game co-location with distance-based game partitioning
• Game co-location with our system

• Game deployment density on a whole SoC Cluster (60 SoCs)

q Support games exceeding 
the capacity of one SoC.



End-to-end Game Deployment
• Baselines
• Dedicated deployment: One game instance per SoC.
• Game co-location: One or more game instance per SoCs.
• Game co-location with distance-based game partitioning
• Game co-location with our system

• Game deployment density on a whole SoC Cluster (60 SoCs)

q Support games exceeding 
the capacity of one SoC.

q Up to 4.5x improvement 
over dedicated deployment.

q Up to 1.5x improvement 
over previous co-location 
methods.

4.5x 1.5x1.5x



End-to-end Game Deployment
• Game performance (FPS)

Trivial game performance reduction on Sewer-Mid: 
Average FPS drops from 54 to 52. (Target FPS: 55)



End-to-end Game Deployment
• Hardware load

q GPU load: 22% increase compared to dedicated deployment; 
7.5% increase compared to game co-location.

q The average GPU load reaches 97%.
q The additional CPU costs incurred by duplicate game logic is 

manageable by a single SoC.



End-to-end Game Deployment
• Frame super-resolution
• Frame super-resolution is a complementary solution for GPU shortage.
• 2 out of all 5 games, 16% of all game sessions involve frame super-resolution.

q The frame super-resolution process can be injected into the 
frame rendering process (the overall latency is less than the 
time budget for rendering a frame).

q Satisfactory frame quality (a PSNR value larger than 30).
q Mobile NPUs are still fast growing! (15 TOPS on Snapdragon 

865 SoC vs. the latest Snapdragon 8 Gen 3)



Conclusion
• Reveal the status quo of mobile cloud gaming on SoC Clusters.
• The first system for high-density mobile cloud gaming on SoC Clusters.
• Two simple yet efficient techniques
• Pre-rendering game partitioning
• NPU-enhanced game partitioning coordination mechanism

• Improvement in game deployment density and the ability to support 
games that cannot be supported by an individual SoC.
• SFG Code: https://github.com/lizhang20/SFG

High-density Mobile Cloud Gaming on Edge SoC Clusters

Li Zhang, Shangguang Wang, Mengwei Xu
Beijing University of Posts and Telecommunications (BUPT)

https://github.com/lizhang20/SFG

